terclim by ICS banner
IVES 9 IVES Conference Series 9 Cover crops under-vine impact on grapevine performance and vineyard soil microorganisms is highly affected by edaphoclimatic conditions at a regional scale 

Cover crops under-vine impact on grapevine performance and vineyard soil microorganisms is highly affected by edaphoclimatic conditions at a regional scale 

Abstract

Soil management through cover crops can influence the cycle of nutrients, promote water infiltration, decrease erosion, and enhance the soil microbiota biodiversity, improving the grapevine performance. However, the area under the vines tends to be left bare by applying herbicides or tillage to avoid competition with the crop in semi-arid climates. Use of covers under-vine might be an alternative to these practices aiming at grapevine quality and soil health improvement. The aim of this research was to study the implications of soil management under the vines (cultivation and cover crops) on growth, yield, berry composition and soil microbial communities. A cover crop composed by a mixture of legumes was sown and compared with a control (cultivation), which includes frequent tillage to keep the soil bare, in three areas characterized by different edaphoclimatic conditions in the region of Navarra.

The use of cover crops under the vines tended to decrease vegetative growth and increase yield, although these differences were modulated by the edaphoclimatic characteristics of the area. Few effects were observed on berry quality at harvest, with only some variations on berry mass and malic acid content in the cover cropped treatment. On the other hand, soil health indicators were improved, the cover crop establishment accounting for a better nutrient profile in soils and microbial diversity. In conclusion, the use of under-vine covers could be an alternative to conventional management to control the growth of adventitious vegetation with little competition with the vines and improved soil quality.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

A. Fernández-Morales1, I. Virto3, M. Velaz1, Isabel de Soto3, Alberto Enrique3, M. Loidi1, M. Galar1, L.G. Santesteban1,2, N. Torres1,2*

1  Dept. of Agronomy, Biotechnology and Food Science, Public University of Navarre, Campus Arrosadia, 31006 Pamplona, Navarra, Spain
2 Institute for Multidisciplinary Research in Applied Biology (IMAB-UPNA), Public University of Navarre, Campus Arrosadia 31006 Pamplona, Spain
3 Dept. of Sciences, Public University of Navarre, Campus Arrosadia, 31006 Pamplona, Navarra, Spain

Contact the author*

Keywords

Berry quality, legumes, soil health, soil management, vineyard-living microbiota

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

De novo Vitis champinii whole genome assembly allows rootstock-specific identification of potential candidate genes for drought and salt tolerance

Vitis champinii cultivars Ramsey and Dog-ridge are main choices for rootstocks to adapt viticulture in semi-arid and arid regions thanks to their distinctive tolerance to drought and salinity. However, genetic studies on non-vinifera rootstocks have heavily relied on the grapevine (Vitis vinifera) reference genome, which difficulted the assessment of the genetic variation between rootstock species and grapevines. In the present study, this limitation is addressed by introducing a novo phased genome assembly and annotation of Vitis champinii. This new Vitis champinii genome was employed as reference for mapping RNA-seq reads from the same species under drought and salt stresses, and for comparison the same reads were also mapped to the Vitis vinifera PN40024.V4 reference genome. A significant increase in alignment rate was gained when mapping Vitis champinii RNA-seq reads to its own genome, compared to the Vitis vinifera PN40024.V4 reference genome, thus revealing the expression levels of genes specific to Vitis champinii. Moreover, differences in coding sequences were observed in ortholog genes between Vitis champinii and Vitis vinifera, which therefore challenges previous differential expression analyses performed between contrasting Vitis genotypes on the same gene from the Vitis vinifera genome. Genes with possible implications in drought and salt tolerance have been identified across the genome of Vitis champinii, and the same genomic data can potentially guide the discovery of candidate genes specific from Vitis champinii for other traits of interest, therefore becoming a valuable resource for rootstock breeding designs, specially towards increased drought and salinity due to climate change.

Characterization of varieties named ‘Caiño’ cultivated from Northwest of Spain

The ‘Caiño’ cultivar was cultivated in Galicia (Northwestern Spain) before the invasion of grape phylloxera. Genetic diversity from this cultivar have been described and considered as originating in Galicia, ‘Caiño Tinto’, ‘Caiño Bravo’, ‘Caiño Redondo’, ‘Caiño Longo’ and ‘Caiño Blanco’.

The effect of soil and climate on the character of Sauvignon blanc wine

Un projet multidisciplinaire sur l’effet du sol et du climat sur la qualité du vin a débuté en Afrique du Sud il y a 5 ans. Des mesures sont effectuées sous culture sèche dans des vignes de Sauvignon Blanc dans six localités différentes, cinq dans le district de Stellenbosch et une à Durbanville.

Visualization of wine origin, quality level and terroir by the landscape

The communication of the aims of a viticulture under the premise of terroir is presently discussed in a lot of wine-growing regions around the world. To encourage this discussion the differences in knowledge, understanding, and preference concerning wine and landscape should be regarded more closely: the wine should be perceived as a representative of its region and one of the most characteristic features of a region is the landscape.

Utilización de los estudios detallados y muy detallados de suelos en la microzonificación vitícola

Se justifica la utilización de los mapas de suelos detallados y muy detallados como instrumento fundamental en los estudios de microzonificación.