Terroir 2016 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2016 9 Climates of Wine Regions Worldwide 9 Mapping climate and bioclimatic indices at high-resolution in vineyard regions

Mapping climate and bioclimatic indices at high-resolution in vineyard regions

Abstract

Many of the world’s vineyard regions are located in regions of complex terrain, with the result there is significant local climate variation. The range of climatic conditions provides the opportunity for wine producers to readily adapt to the increasing influence of global warming on wine production by adjusting grape varieties and management practices to suit local environmental conditions. However, to allow this to happen, knowledge of fine scale variations in climate in vineyard regions needs to be improved. Our recent research has demonstrated that mesoscale atmospheric numerical models can be used to provide a good representation of the small-scale variations of climate in such regions of complex terrain. They are particularly useful for mapping mean daily temperature, which is the main variable used to derive bioclimatic indices of relevance to grapevine growth (such as the Huglin, Winkler, Grapevine Flowering Véraison and cool nights indices).

This paper provides examples of recent research in which the Weather Research and Forecasting climate model has been used to improve our understanding of climate variability at high spatial (1 km and less) and temporal (hourly) resolution within vineyard regions of different terrain complexity (e.g. in South Africa, New Zealand and France). Model performance is evaluated through comparison with automatic weather stations. The model output is used to investigate the spatial variability of derived bioclimatic indices and climatic hazards such as the occurrence of late frost, at high resolution across vineyard regions. Further analysis has also provided useful insights into grapevine response to spatial variability of climate through the prediction and mapping of dates of the key phenological stages of flowering and véraison.”.

DOI:

Publication date: June 22, 2020

Issue: Terroir 2016

Type: Article

Authors

Andrew Sturman (1), Peyman Zawar-Reza (1), Iman Soltanzadeh (2), Marwan Katurji (1), Valérie Bonnardot (3), Amber Parker (4), Mike Trought (5), Hervé Quénol (3), Renan Le Roux (3), Eila Gendig (6) and Tobias Schulmann (7)

(1) Centre for Atmospheric Research, University of Canterbury, Christchurch, New Zealand
(2) MetService, Wellington, New Zealand
(3) LETG-Rennes COSTEL, UMR 6554 CNRS, Université Rennes 2, Rennes, France
(4) Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
(5) Plant & Food Research Ltd., Marlborough Wine Research Centre, Blenheim, New Zealand
(6) Department of Conservation, Christchurch, New Zealand
(7) Catalyst, Christchurch, New Zealand

Contact the author

Keywords

Terroir, climate, bioclimatic indices, mapping, zoning

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

The state-of-the-art of grapevine biotechnology and new breeding technologies (NBTS)

 The manipulation of the genetic basis controlling grapevine adaptation and phenotypic plasticity can be performed either by classical genetics or biotechnologies.

Correlation between grape and wine quality, landscape diversity, on-field biodiversity, in doc gioia del colle, italy

Analysis of aerial photos by using GIS tools and on-field surveys of flora are used to characterize territories from an agro-ecological point of view and to assess the level of diversity of given agro-ecosystems. More and more correlations between landscape characteristics, sustainability and quality of agriculture production were speculated. In last three years a study was carried out in the area of DOC “Gioia del Colle” in Apulia, South Italy, in order to characterize and investigate different vineyards and sites and find out possible interactions and correlations between the landscape diversity, the biodiversity of fields and the quality of grapes and wines.

Assessing the climate change vulnerability of European winegrowing regions by combining exposure, sensitivity and adaptive capacity indicators

Winegrowing regions recognized as protected designations of origin (PDOs) are closely tied to well defined geographic locations with a specific set of pedoclimatic attributes and strictly regulated by legal specifications. However, climate change is increasingly threatening these regions by changing local conditions and altering winegrowing processes. The vulnerability to these changes is largely heterogenous across different winegrowing regions because it is determined by individual characteristics of each region, including the capacity to adapt to new climatic conditions and the sensitivity to climate change, which depend not only on natural, but also socioeconomic and legal factors. Accurate vulnerability assessments therefore need to combine information about adaptive capacity and climate change sensitivity with projected exposure to new climatic conditions. However, most existing studies focus on specific impacts neglecting important interactions between the different factors that determine climate change vulnerability. Here, we present the first comprehensive vulnerability assessment of European wine PDOs that spatially combines multiple indicators of adaptive capacity and climate change sensitivity with high-resolution climate projections. We found that the climate change vulnerability of PDO areas largely depends on the complex interactions between physical and socioeconomic factors. Homogenous topographic conditions and a narrow varietal spectrum increase climate change vulnerability, while the skills and education of farmers, together with a good economic situation, decrease their vulnerability. Assessments of climate change consequences therefore need to consider multiple variables as well as their interrelations to provide a comprehensive understanding of the expected impacts of climate change on European PDOs. Our results provide the first vulnerability assessment for European winegrowing regions at high spatiotemporal resolution that includes multiple factors related to climate exposure, sensitivity, and adaptive capacity on the level of single winegrowing regions. They will therefore help to identify hot spots of climate change vulnerability among European PDOs and efficiently direct adaptation strategies.

Determination of Aroma Compounds in Grape Mash under Conditions of Tasting by On-line Near-Infrared Spectroscopy

The production of high-quality wines requires the use of high-quality grapes. Some compounds originating from grapes may negatively influence the odour and flavour of the resulting wine in their original form or as precursors for off-odours and –flavours. Therefore, a rapid evaluation of the grapes directly upon receival at the winery is advantageous. Up to now, grape aroma is mainly evaluated by tasting, however, this leads to subjective results. The use of near-infrared (NIR) spectroscopy allows a rapid, objective and destruction-free analysis without previous sample preparation. Moreover, the measurement can be integrated into an existing process without additional sampling.

Do high temperature extremes impact berry tannin composition?

Flavonoids, including flavonols, anthocyanins, and tannins, are important contributors to grape and wine quality, and their biosynthesis is strongly influenced by bunch microclimate.