terclim by ICS banner
IVES 9 IVES Conference Series 9 Simulated climate change in a Mediterranean organic vineyard altered the plant physiology and decreased the vine production

Simulated climate change in a Mediterranean organic vineyard altered the plant physiology and decreased the vine production

Abstract

This study focuses on investigating the effects of climate change on the plant physiology and berries of Vitis vinifera cv “Monastrell” in a commercial vineyard managed organically in Southeastern Spain (Jumilla, Murcia).  For this purpose, open top chambers and rainout shelters were employed to simulate warming (~2-7 ºC, W) and rainfall reduction (~30%, RR) respectively. Additionally, a combination of both treatments (W+RR) was employed. Vines without either top chambers or rainout shelters were considered as control (C). The experiment was established in February of 2023. Predawn leaf water potential (measured using a pressure chamber), stomatal conductance (assessed with a porometer at mid-morning) and leaf chlorophyll and flavonoid content (measured using the Dualex® leaf clip sensor) were analyzed at veraison (5 months after the installation of structures). At harvest, the yield and dehydration rate of grapes were determined. The results revealed severe water stress (< -0.8 MPa) in all treatments, with a significant reduction in stomatal conductance in leaves of vines under the W+RR treatment. Moreover, warming treatments (W and W+RR) led to a significant decrease in flavonoid content. At harvest, grapes from the warming treatments resulted in a higher dehydration rate, showing a significant decrease in cluster weight compared to C and RR treatments. In conclusion, during the first year, treatments involving temperature increases and water restriction had a similar effect on the stress water indicators used; however, warming treatments induced a different metabolic response, influencing flavonoids and berries.

Acknowledgments : Funded by PDI2021124382OB-I00 project of the State Research Agency (Ministry of Science and Innovation, Spain).

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

L. Martín1, M.V. Alarcón2, M.E. Valdés3, M.M. Alguacil4

Plant Protection. Instituto de Investigaciones Agrarias Finca La Orden-Valdesequera. CICYTEX, 06187 Guadajira (Spain)
2 Agronomy of woody and horticultural crops. Instituto de Investigaciones Agrarias Finca La Orden-Valdesequera, CICYTEX, 06187 Guadajira (Spain)
3 Food and Agriculture Technology Institute of Extremadura (CICYTEX_INTAEX). Adolfo Suárez s/n Avenue, Badajoz, 06071, (Spain)
4CSIC-Centro de Edafología y Biología Aplicada del Segura. Department of Soil and Water Conservation. P.O. Box 164, Campus de Espinardo 30100-Murcia (Spain)

Contact the author*

Keywords

Monastrell, open-top chambers, rainout shelters, organic farming

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Temperature effects on the biosynthesis of aroma compounds in glera grapes

This paper describes the first year results of a study that investigated the effects of altitude and related temperature parameters on the biosynthesis of aromas in the Italian cultivar Glera.

Vineyard’s ozone application to induce secondary metabolites accumulation in grapes and wine

In viticulture sector to find new tools for pest management has become an urgent necessity. Hence, grapevines cultivation has high production rate demand and to meet the intensive market request, a massive use of pesticides is often required. In addition to the environmental problems associated with large use of chemicals, there is an increasing number of consumers which are asking for

Precipitation variability in a temperate coastal region and how it affects Tannat and Albariño cultivars 

Climate is one of the main components that defines the development and behavior of the plant, conditioning the health status and the final quality of the grapes. In temperate coastal climates such as in Uruguay (latitude 35° S, longitude 55° O), precipitations during the growing season present high interannual variability, with a average of 100 mm per month. This variability means that plants must adapt to conditions from one year to the next.

Enological, economical, social and viticulture ”terroir” units as fundamental elements of mosaic of “big” zoning

Nous savons tous très bien qu’on a assisté au cours de ces dix dernières années à une éclosion soudaine de recherches sur le zonage viti-vinicole qui, à partir par exemple du modèle du concept de “terroir”, se sont de plus en plus enrichies en passant aux “Unités ou Systèmes de Transformation” (UTTE) et “Valorisation” (UTCE) pour terminer avec les “Systèmes productifs globaux du Territoire” (UTB) comprenant en filière les aspects existentiels (UTBES), sociaux (UTBSO) et économiques (UTBEC) hypothisés dans le “GRANDE ZONAZIONE: Grand zonage” (MORLAT R., 1996, CARBONNEAU A., 1996, TOUZARD J.M. 1998, CARBONNEAU A., CARGNELLO G., 1996, 1998, CARGNELLO G., 1994, 1995, 1996, 1998, 1999, 2001, -MILOTIC A., CARGNELLO G., PERSURIC G., 1999, PERSURIC G., STAYER M., CARGNELLO G., 2000, MILOTIC A., OPLANIC M., CARGNELLO G., PERSURIC G., 2000).

Model-assisted analysis of the root traits underlying RSA genotypic diversity in Vitis: a promising approach for rootstock selection?

By dissecting the root system architecture (RSA) into its underpinning components (e.g. root emission, axial growth, radial growth, branching, root direction or tropism) and identifying the relationships between them, functional-structural 3D root models are promising tools for analyzing the diversity and complexity of root system phenotypes with Genotype × Environment interactions. The model parameters are assumed to be synthetic traits, less influenced by the environment, and consequently with less polygenic architectures than the integrative RSA traits they drive. Root models can serve as a basis for in silico development of root system ideotypes by highlighting the developmental processes and parameters that most likely influence RSA fitness.