terclim by ICS banner
IVES 9 IVES Conference Series 9 Simulated climate change in a Mediterranean organic vineyard altered the plant physiology and decreased the vine production

Simulated climate change in a Mediterranean organic vineyard altered the plant physiology and decreased the vine production

Abstract

This study focuses on investigating the effects of climate change on the plant physiology and berries of Vitis vinifera cv “Monastrell” in a commercial vineyard managed organically in Southeastern Spain (Jumilla, Murcia).  For this purpose, open top chambers and rainout shelters were employed to simulate warming (~2-7 ºC, W) and rainfall reduction (~30%, RR) respectively. Additionally, a combination of both treatments (W+RR) was employed. Vines without either top chambers or rainout shelters were considered as control (C). The experiment was established in February of 2023. Predawn leaf water potential (measured using a pressure chamber), stomatal conductance (assessed with a porometer at mid-morning) and leaf chlorophyll and flavonoid content (measured using the Dualex® leaf clip sensor) were analyzed at veraison (5 months after the installation of structures). At harvest, the yield and dehydration rate of grapes were determined. The results revealed severe water stress (< -0.8 MPa) in all treatments, with a significant reduction in stomatal conductance in leaves of vines under the W+RR treatment. Moreover, warming treatments (W and W+RR) led to a significant decrease in flavonoid content. At harvest, grapes from the warming treatments resulted in a higher dehydration rate, showing a significant decrease in cluster weight compared to C and RR treatments. In conclusion, during the first year, treatments involving temperature increases and water restriction had a similar effect on the stress water indicators used; however, warming treatments induced a different metabolic response, influencing flavonoids and berries.

Acknowledgments : Funded by PDI2021124382OB-I00 project of the State Research Agency (Ministry of Science and Innovation, Spain).

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

L. Martín1, M.V. Alarcón2, M.E. Valdés3, M.M. Alguacil4

Plant Protection. Instituto de Investigaciones Agrarias Finca La Orden-Valdesequera. CICYTEX, 06187 Guadajira (Spain)
2 Agronomy of woody and horticultural crops. Instituto de Investigaciones Agrarias Finca La Orden-Valdesequera, CICYTEX, 06187 Guadajira (Spain)
3 Food and Agriculture Technology Institute of Extremadura (CICYTEX_INTAEX). Adolfo Suárez s/n Avenue, Badajoz, 06071, (Spain)
4CSIC-Centro de Edafología y Biología Aplicada del Segura. Department of Soil and Water Conservation. P.O. Box 164, Campus de Espinardo 30100-Murcia (Spain)

Contact the author*

Keywords

Monastrell, open-top chambers, rainout shelters, organic farming

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Impacts of climate change on cv. Glera buds’ fruitfulness – 18 years of monitoring in the Conegliano-Valdobbiadene area, Italy

Context and purpose of the study. The vine is generally a very fertile plant when compared to other tree species.

A comprehensive and accurate annotation for the grapevine T2T genome 

Addressing the opportunities and challenges of genomics methods in grapevine (Vitis vinifera L.) requires the development of a comprehensive and accurate reference genome and annotation. We aimed to create a new gene annotation for the PN40024 grapevine reference genome by integrating the highly accurate and complete T2T assembly and the manually curated PN40024.v4 annotation. Here, we present a novel workflow to enhance the annotation of the T2T genome by incorporating past community input found in PN40024.v4. The pipeline’s containerization will improve the workflow’s reproducibility and flexibility, facilitating its inclusion as a shared workflow on the Grapedia portal, the grapevine genomics encyclopedia.

Le réseau français des partenaires de la sélection vigne : un dispositif unique au monde au service de la sauvegarde du patrimoine variétal

The French vine selection partners network is currently made up of 40 regional partners, grouped around IFV (French Institute for Vine and Wine) and INRAE (national research institute for agriculture and environment), whose missions are preservation, selection, and innovation of our varietal diversity. The originality of this device is based on a 3-level organisation: – varietal diversity preservation, with the world reference: the INRAE’s vine genetics resources centre of Vassal-Montpellier (Marseillan, France), the world’s largest ampelographic collection, which includes nearly 6 000 accessions of cultivated Vitis vinifera from 54 countries, as well as rootstocks, interspecific hybrids, wild vines (lambrusques) and wild American and Asian species.

Analysis of volatile composition of interaction between the pathogen E. necator and two grapevine varieties

Volatile organic compounds (VOCs) are emitted by nearly all plant organs of the plants, including leaves. They play a key role in the communication with other organisms, therefore they are involved in plant defence against phytopathogens. In this study VOCs from grapevine leaves of two varieties of Vitis vinifera infected by Erysiphe necator were analysed. The varieties were selected based on their susceptibility to pathogen, Kishmish Vatkana has the Ren1 resistance gene and Zamarrica showed high susceptibility in previous trials.

Influence of phenolic composition and antioxidant properties on the ageing potential of Syrah red wines measured by accelerated ageing tests.

Red wine ageing impacts its chemical and sensory characteristics such as colour, astringency and aromas evolution. Wine ageing involves many chemicals and physico-chemical reactions. Oxygen has an important role in these evolutions, especially during bottle ageing. It is known that wine composition and its antioxidant capacity are correlated to its ability to undergo with oxygen exposure [1]. A high oxygen exposure can affect wine quality by the formation of undesirable oxidative volatile compounds such as acetaldehyde [2]. Thus, ageing capacity is an important factor for wine quality and is related to extent of oxidation with ageing [3].