terclim by ICS banner
IVES 9 IVES Conference Series 9 Mgaloblishvili Rpv29 and Rpv31 loci reveal new insights on downy mildew resistance sources in Vitis vinifera

Mgaloblishvili Rpv29 and Rpv31 loci reveal new insights on downy mildew resistance sources in Vitis vinifera

Abstract

Downy mildew, a disease caused by Plasmopara viticola (Berk. et Curt.) Berl. and De Toni, is one of the strongest threats to grapevine (Vitis vinifera L.) production. Recently, sources of resistance to downy mildew were identified among Caucasian germplasm. Among them, the Georgian variety Mgaloblishvili revealed a unique resistance mechanism. A genome wide association study (GWAS) allowed the identification of the genetic bases of Mgaloblishvili resistance, the loci Rpv29, Rpv30 and Rpv31. To dissect the three resistance loci, Mgaloblishvili genome was sequenced using PacBio HiFi reads and assembled. A chromosome-scale diploid genome assembly consisting of ~ 986 Mb and a contig N50 length of 25.8 Mb was obtained. A total of 58,912 protein-coding genes were predicted on the two sets of phased chromosomes. A whole genome comparison with the genome of the susceptible reference accession PN40024 was performed. Mgaloblishvili resistance loci were in-depth analyzed in terms of structure, gene content, gene expression and impact of structural variants (SVs) and SNPs (Single Nucleotide Polymorphisms). Furthermore, using DNA sequencing data of Mgaloblishvili self-cross progeny, resistance haplotypes were identified for Rpv30 and Rpv31. The obtained data highlighted Mgaloblishvili resistant phenotype as a consequence of multiple small SVs and SNPs, that eventually results into differential transcriptional regulation. Altogether, these genetic resources will increase the knowledge about downy mildew-grapevine pathosystem. Moreover, they will be available for breeding programs aiming to develop grapevine resistant varieties.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Valentina Ricciardi 1, Andrea Minio 2, Melanie Massonnet 2, Alexander H.J. Wittenberg3, David Maghradze 4,5,6, Silvia Laura Toffolatti 1, Osvaldo Failla 1, Dario Cantù 2*, Gabriella De Lorenzis

1 Department of Agricultural and Environmental Sciences, University of Milan
2 Department of Viticulture and Enology, University of California, Davis (CA), USA
3 KeyGene, Wageningen, The Netherlands
4 Caucasus International University, Tbilisi, Georgia
5 Georgian Technical University, Tbilisi, Georgia
6National Wine Agency of Georgia, Tbilisi, Georgia

Contact the author*

Keywords

Grapevine, biotic stress, QTL, genome, Caucasus

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

StartupLab and HackaVitis: open innovation and technology transfer in the wine sector

The study analyzes a set of open innovation actions promoted by the innovation environments of the Instituto Federal do Rio Grande do Sul (IFRS), in cooperation with entities, companies in the sector and the Department of Innovation, Science and Technology of Rio Grande do Sul.

Optimizing vine pruning of Pinot noir and Müller-Thurgau after extreme hail damage

Hail damage can have a major impact on the vine’s physiological growth (defoliation, wood and cane damage) and can lead to significant yield and economic losses.

Application of zoning for wine production, digitalisation and traceability

Depuis la création des outils d’amélioration et de suivi de la qualité, le CREDO développe et réalise des zonages de potentialités viticoles.

Characterization of spoilage yeasts from Malbec grapes from San Rafael wine region (Argentina)

The yeast ecosystem in grape musts is quite broad and depends on the region and the health of the grapes. Within this, there are yeasts that can generate fermentative deviations and/or cause defects in the wine. It is very important to address this issue because there are significant economic losses in the wine industry when the fermentation process and/or the organoleptic characteristics of the wine are negatively affected, even more today since climate change has a marked effect on the composition of this ecosystem. The aim of this work is to characterize the behavior regarding detrimental oenological features of potential spoilage yeasts isolated from viticultural environments.

NEW PLANT BIOPOLYMERS FOR THE COLLOIDAL STABILITY OF THE COLORING MATTER OF RED WINES

The color as well as the “clarity” of red wines are ones of the qualities required by the consumers. Red wines must have colloidal stability from its bottling to its consumption. The supplementation of red wines with additives, and especially Acacia senegal gum, contributes to its organoleptic properties such as the colloidal stabilization of the coloring matter. In a global perspective of limitation of additives in the field of enology, one of the objectives is notably (i) to reduce the use of additives in wines, by their number and/or their quantity, and (ii) to favor the use of natural additives while preserving the organoleptic and sensory qualities of wines.