terclim by ICS banner
IVES 9 IVES Conference Series 9 A DNA-free editing approach to help viticulture sustainability: dual editing of DMR6-1 and DMR6-2 enhances resistance to downy mildew 

A DNA-free editing approach to help viticulture sustainability: dual editing of DMR6-1 and DMR6-2 enhances resistance to downy mildew 

Abstract

The sustainability of viticulture hinges on maintaining quality and yield while reducing pesticide use. Promising strides in this direction involve the development of clones with enhanced disease tolerance, particularly through the knockout of plant susceptibility genes. Knocking out of Downy Mildew Resistant 6 (DMR6) led to increased levels of endogenous salicylic acid (SA), a regulator of immunity, resulting in enhanced tolerance to Downy Mildew (DM) and other diseases in various crops.

Mutations in both DMR6-1 and DMR6-2 genes were introduced into two grapevine cultivars using CRISPR-Cas9 using two methods. In the first case, transgene delivery mediated by A. tumefaciens was employed, while in the second case, we developed a ‘single-cell technology’ for gene editing, creating non-transgenic grapevine mutants through the regeneration of protoplasts previously edited with the CRISPR/Cas9 ribonucleoprotein.

We tested the susceptibility of single and double mutants to DM through artificial inoculation assays on detached leaves and whole plants. Our findings indicate that a simultaneous mutation in both DMR6-1 and DMR6-2 is needed to significantly enhance resistance to DM, with the double mutant (dmr6-1-dmr6-2) outperforming either single mutant in both cultivars. Elevated levels of endogenous SA were only observed in the double mutant, while single mutation in DMR6-1 or DMR6-2 proved ineffective. Collectively, our data highlight the need for a double knockout to achieve appreciable results against DM-susceptibility.

Currenlty, we are adapting the ‘single-cell technology’ to generate edited vines from various agronomically relevant cultivars. In parallel, we are assessing the performance of plants edited in different susceptibility genes.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Lisa Giacomelli1*, Tieme Zeilmaker2, Oscar Giovannini1, Umberto Salvagnin3, Domenico Masuero1, Pietro Franceschi1, Urska Vrohvsek1, Simone Scintilla4, Jeroen Rouppe van der Voort2, Claudio Moser1

1 Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
2 Enza ZadenEnza Zaden Research & Development B.V., Enkhuizen, The Netherlands  
3 C.I.VIT. Consorzio Innovazione Vite, Trento, Italy
4 Hudson River Biotechnology, Wageningen, The Netherlands

Contact the author*

Keywords

DMR6, grapevine, DNA-free, gene editing, downy mildew, susceptibility gene

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Effect of soil particle size on vine water status, leaf ABA content and berry quality in Nebbiolo grapes

The root and shoot abscisic acid (ABA) accumulation in response to water deficit and its relation with stomatal conductance is longtime known in grapevine. ABA-dependent and ABA-independent signalling response to osmotic stress coexist in sessile plants. In grapevine, the signaling role of ABA in response to water stress conditions and its influence on berry quality is critical to manage grapevine acclimation to climate change.

Genomic perspective of Lachancea thermotolerans in wine bioacidification

We have sequenced two commercial strains of Lachancea thermotolerans (Lt) from the company Lallemand: Laktia™ y Blizz™.

From vineyard to bottle. Rationalizing grape compositional drivers of the expression of valpolicella aroma ‘terroir’

AIM: Valpolicella is a renowned Italian wine-producing region (Paronetto, 1981). Wines produced in its different sub-regions are anecdotally believed to be aromatically different, although there is no systematic study addressing the chemical bases of such diversity

Natural glycolipids for the control of spoilage organisms in red wine

A natural glycolipid mixture obtained from the edible mushroom dacryopinax spathularia (“glycolipids”) is known to be an effective and approved antimicrobial treatment in non-alcoholic beverages at concentrations ranging from 5 – 100 mg/l. It has found a place alongside DMDC for the provision of microbial stability in soft drinks. These properties make the natural and sustainably produced glycolipids a promising candidate for the supplementation or replacement of SO2 in different winemaking processes.

Influence of berry maturity, maceration time and wine maturation on the polyphenols and sensory characteristics of pinot noir and Cabernet-Sauvignon

AIM: Combined investigation of the influence of berry maturity, maceration time and wine maturation on the changes in polyphenols and sensory characteristics of Pinot noir and Cabernet-Sauvignon.