Terroir 2016 banner
IVES 9 IVES Conference Series 9 The “resources profile®”: a relevant decision and support system for adapting viticultural practices to soils agronomic properties and limiting their environmental impacts

The “resources profile®”: a relevant decision and support system for adapting viticultural practices to soils agronomic properties and limiting their environmental impacts

Abstract

Soil is a three-dimensional complex system, which constitutes a major component of Terroir. Soil characteristics strongly influence vine development, grape oenological potentialities and thus wine quality and style.

Soil profile description by means of pits is essential for a relevant characterization of the soil. However, the interpretation of results is very difficult for non-specialists, as for most of advisors or winegrowers, due to the multitude of parameters and their variability within the soil profile.

We propose here a novel method to represent soil parameters variability, integrating thickness and depth of the different horizons, providing an operational Decision and Support System (DSS) for winegrowers and advisors.

For each parameter, soil profile is represented by a vertical block divided in 10 centimeters layers, in order to highlight the thickness of the different horizons. According to the parameter value, a specific color code, based on analytical references, is applied for each horizon. This method has been applied on different soil parameters : coarse fragments content, clay content, slaking and compaction index, carbonate content, pH, organic content and stock, carbon/nitrogen ratio, cation exchange capacity, exchangeable cations contents, base saturation percentage.

This method, called « Resources Profile® », has been tested on a large number of soil types, representative of soils variability in Bordeaux wine production area (France). It allows to easily visualize soil parameters variability within soil profile and to evaluate agronomic properties, such as hydrological soil properties, organic and calcic status, mineral resources or degradation sensitivities.

We believe that the « Resources Profile® » is a relevant DSS for adapting viticultural practices to soils characteristics and for limiting their environmental impacts. This DSS is likely to facilitate the spread of soil science knowledge to the vinegrowing industry.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

M Christen (1), L Cazenave (1), M Guinoiseau (1), E Beauquesne (2), P Guilbault (1)

(1) Chambre d’Agriculture de la Gironde – Vinopôle Bordeaux-Aquitaine, 39 rue Michel Montaigne – CS 20115 33295 Blanquefort Cedex, France
(2) AUREA Agrosciences, 39 rue Michel Montaigne – CS 20115, 33295 Blanquefort Cedex, France

Contact the author

Keywords

winegrowing soils, soil profiles, soil horizons, soil analysis, agronomic properties, viticultural practices, Decision and Support System

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Evaluation of phenology, agronomic and oenological quality in minority wine varieties in Madrid as a strategy for adaptation to climate change

The main phenological stages (budburst, flowering, veraison, and ripeness) and the fruit composition of 34 Spanish minority varieties were studied to determine their cultivation potential and help winegrowers adapt their production systems to climate change conditions. In total, 4 control cultivars, and 30 minority varieties from central Spain were studied during a period of 3 campaigns, in the ampelographic collection “El Encín”, in Alcalá de Henares, Madrid. Agronomic and oenological characteristics such as yield, and total soluble solids concentration have been monitored.

Simulating the impact of climate change on grapevine behaviour and viticultural activities

Global climate change affects regional climates and hold implications for wine growing regions worldwide

Evaluation of viticultural measures to delay ripening of Vitis vinifera ‘Grüner Veltliner’

Context and purpose of the study. `Grüner Veltliner´ is the most important Austrian white quality wine variety, which is mainly used to produce primary fruity wines.

Stomatal abundance in grapevine: developmental genes, genotypic variation, and physiology

Grapevine cultivation is threatened by the global warming, which combines high temperatures and reduced rainfall, impacting in wine quality and even plant survival. Breeding for varieties resilient to these challenges must address plant traits such as tolerance to supraoptimal temperatures and optimized water use efficiency while minimizing productivity and quality losses. Stomatal abundance (SA) determines the maximum leaf potential for transpiration and thus water loss and cooling. Since SA results from a developmental process during leaf emergence and growth, knowledge on the genetic control of this process would provide specific targets for modification.

Training system and its influence on iso-anisohydric behavior of cv. Syrah

Water use efficiency is one of the most valued objectives in vine growing in mediterranean climates (de la fuente et al., 2015). Due to this, the grape growers provide different adaptation strategies according to their efficient consumption against the presumable water deficit generated under these environmental conditions. The use of non-positioned shoot systems (like sprawl, bush, etc.) Can help to achieve this objective.