terclim by ICS banner
IVES 9 IVES Conference Series 9 Defining gene regulation and co-regulation at single cell resolution in grapevine

Defining gene regulation and co-regulation at single cell resolution in grapevine

Abstract

Conventional molecular analyses provide bulk genomic/transcriptomic data that are unable to reveal the cellular heterogeneity and to precisely define how gene networks orchestrate organ development. We will profile gene expression and identify open chromatin regions at the individual cells level, allowing to define cell-type specific regulatory elements, developmental trajectories and transcriptional networks orchestrating organ development and function. We will perform scRNA-seq and snATAC-seq on leaf/berry protoplasts and nuclei and combine them with the leaf/berry bulk tissues obtained results, where the analysis of transcripts, chromatin accessibility, histone modification and transcription factor binding sites showed that a large fraction of phenotypic variation appears to be determined by regulatory rather than coding variation and that many variants have an organ-specific effect. By bioinformatics approaches we will identify cell and gene clusters, interpreting the heterogeneity from single-cell transcriptomes; subsequently, we will perform in situ hybridizations to corroborate already predicted cell-type annotations and to identify new cell-type marker genes, required for the cell identity definition, and for the experimental validations of scRNA-seq data. The realization of a single cell resolution spatiotemporal transcriptomic and chromatin accessibility map of grapevine berry will allow to link gene expression profiles to cellular and developmental processes, uncovering part of the molecular mechanisms of ripening and slowly providing the key in maintaining high quality grapes and wine. Building organ-scale gene expression maps is essential to drive technological innovation such as reprogramming cell identity and inducing phenotypic changes via cell-type-specific gene editing.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Chiara Foresti1*, Michele Morgante2, Paola Paci3, Sara Zenoni1

1Department of Biotechnology, University of Verona, Verona, Italy
2IGA and Department of Agri-food, Environmental and Animal Sciences, University of Udine, Italy
3Institute for System Analysis and Computer Science “Antonio Ruberti”, National Research Council, Rome, Italy

Contact the author*

Keywords

Single-cell RNA-seq, single nucleus ATAC-seq, gene expression regulation, gene network, developmental trajectories

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Quantitative and qualitative changes in terpenes during enzymatic maceration and fermentation in wine production: insights from Polish grape varieties

The production of fermented alcoholic beverages involves numerous processes in which microorganisms and enzymes convert components derived from the raw material into a wide range of compounds that affect the sensory characteristics of the resulting product. It is estimated that there may be as many as 800 to 1,000 such compounds in wine. These compounds belong to different chemical groups such as esters, alcohols, carboxylic acids, carbonyl compounds, polyphenols, sugars and many others.

Oenological potential of indigenous greek grape varieties and their clones

Vine clone selection aims at the survival of clones with particularly desireable attributes for the production of high quality wines. The purpose of this research was to study the enological potential of the clones of Greek indigenous grape varieties over two vintages, 2018 and 2019.
METHODS: Two clones of the white grape varieties Moschofilero (E26 and E27), Assyrtiko (E11 and 16), Roditis (25E16 and 02E1E21) and two clones of the red grape varieties Xinomavro (19 and E2E30) and Agiorgitiko (03E40 and 41E47) were vinified under the same protocol for the white wines and common for the red wines in 2018 and 2019. The resulting products were studied for several enological parameters such as alcohol content, volatile acidity, pH, total phenolics, anthocyanins and tannins for the red wines, as well as browning tests for the white wines. The aroma profile of these ten samples was investigated through sensory analysis with intensity rating of individual attributes on a five-point scale by a trained panel.

Optimizing the use of bentonite for better control of haze formation In white and rosé wines

In winemaking, the appearance of turbidity in white and wine is a serious visual defect, which lowers significantly its commercial value. A major cause of the formation of turbidity in wine is attributed to the presence of temperature-sensitive proteins.

Effect of terroir on the quality evolution of Cabernet-Sauvignon in Penedès A.0.C.

Le Cabernet-Sauvignon est un cépage très répandu dans la région du Penedès (Espagne) où cette variété peut bien s’adapter et donne des produits de haute qualité.

Effect of rising atmospheric CO2 levels on grapevine yield and composition by the middle of the 21st century: what can we learn from the VineyardFACE?

Atmospheric CO2 levels have been rising continuously since the industrial revolution, affecting crop physiology, yield and quality of harvest products, and grapevine is no exception [1]. Most of previously reported studies used potted plants in controlled environments, and explored grapevine response to relatively high CO2 levels, 700 ppm or more. The vineyardFACE, established in Geisenheim in 2012, uses a free air carbon dioxide enrichment (FACE) system to simulate a moderate (ambient +20%) increase in atmospheric CO2 in a vineyard planted with cvs. Cabernet-Sauvignon and Riesling grafted on rootstock 161-49 Couderc and SO4, respectively.