terclim by ICS banner
IVES 9 IVES Conference Series 9 Dry leaf hyperspectral reflectance predicts leaf elemental composition in grafted hybrids

Dry leaf hyperspectral reflectance predicts leaf elemental composition in grafted hybrids

Abstract

Elemental composition, measured as the concentrations of different elements present in a given tissue at a given time point, is a key indicator of vine health and development. While elemental composition and other high-throughput phenotyping approaches yield tremendous insight into the growth, physiology, and health of vines, costs and labor associated with repeated measures over time can be cost-prohibitive. Recent advances in handheld sensors that measure hyperspectral reflectance patterns of leaf tissue may serve as an affordable proxy for other types of phenotypic data, including elemental composition. Here, we ask if reflectance patterns of dried Chambourcin leaf tissue from an experimental grafting vineyard can predict the known elemental composition of those leaves. Using simple modeling strategies, we show that many elements like potassium and phosphorous can be explained by hyperspectral reflectance patterns (R2 = 0.50 and 0.62, respectively). In a predictive framework, we show that the predicted concentration of macronutrients like potassium correlate with the true, known value (r = 0.68). We additionally show that even some micronutrients such as nickel can be predicted (r = 0.53) from hyperspectral reflectance. This work offers a promising approach to assess nutrient composition in the field. We next plan to test our models on independent vineyards to see if the predictions are reasonable given leaf age and time of season. Future work will continue to refine these models for higher quality prediction of more elements and extend to other forms of high-dimensional phenotypes.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Zachary Harris1,2*, Danielle Hopkins2,3, Allison Miller2,3

1 Taylor Geospatial Institute, Saint Louis University, St. Louis, MO
2 Donald Danforth Plant Science Center, St. Louis, MO
3 Department of Biology, Saint Louis University, St. Louis, MO

Contact the author*

Keywords

elemental composition, hyperspectral reflectance, statistical modelling, high-throughput phenotyping, Chambourcin

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Construction of a 3D vineyard model using very high resolution airborne images

In recent years there has been a growth in interest and number of research studies regarding the application of remote optical and thermal sensing by unmanned aerial vehicle (UAV) in agriculture and viticulture. Many papers report on the use of images to map or estimate the growth and water status of plants, or the heterogeneity of different parcels. Most often, NDVI or other similar indices are used.

A blueprint for managing vine physiological balance at different spatial and temporal scales in Champagne

In Champagne, the vine adaptation to different climatic and technical changes during these last 20 years can be seen through physiological balance disruptions. These disruptions emphasize the general grapevine decline. Since the 2000s, among other nitrogen stress indicators, the must nitrogen has been decreasing. The combination of restricted mineral fertilizers and herbicide use, the growing variability of spring rainfall, the increasing thermal stress as well as the soil type heterogeneity are only a few underlying factors that trigger loss of physiological balance in the vineyards. It is important to weigh and quantify the impact of these factors on the vine. In order to do so, the Comité Champagne uses two key-tools: networking and modelization. The use of quantitative and harmonized ecophysiological indicators is necessary, especially in large spatial scales such as the Champagne appellation. A working group with different professional structures of Champagne has been launched by the Comité Champagne in order to create a common ecophysiology protocol and thus monitor the vine physiology, yearly, around 100 plots, with various cultural practices and types of soil. The use of crop modelling to follow the vine physiological balance within different pedoclimatic conditions enables to understand the present balance but also predict the possible disruptions to come in future climatic scenarios. The physiological references created each year through the working group, benefit the calibration of the STICS model used in Champagne. In return, the model delivers ecophysiology indicators, on a daily scale and can be used on very different types of soils. This study will present the bottom-up method used to give accurate information on the impacts of soil, climate and cultural practices on vine physiology.

Heat waves and drought stress impact grapevine growth and physiology

Recurring heat and drought episodes during the growing season can produce adverse impacts on grape production in many wine regions around the world.

Implementation of hyperspectral image analysis for evaluating table grape quality on bunch and berry level

Typically, subjective, and visual methods are used by grape growers to assess harvest maturity. These methods may not accurately represent the maturity of an entire vineyard – especially if extensive and representative sampling was not used. New technologies have been investigated for improved harvest management decisions. Spectroscopy methods utilizing the near-infrared region of the light spectrum is one such technology investigated as an alternative to classic methods and particularly the application of hyperspectral imaging (HSI) has recently gained attention in research. HIS is a spectroscopic technique that obtains hundreds of images at different wavelengths collecting spectral data for each pixel in the sample i.e., providing both spectral and spatial data.

Understanding aroma loss during partial wine dealcoholization by vacuum distillation

Dealcoholization of wine has gained increasing attention as consumer preferences shift toward lower-alcohol or
alcohol-free beverages. This process meets key demands, including health-conscious lifestyles, regulatory
compliance, and the expanding non-alcoholic market [1-3].