OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Influence of cell-cell contact on yeast interactions and exo-metabolome

Influence of cell-cell contact on yeast interactions and exo-metabolome

Abstract

Alcoholic fermentation is the main step for winemaking, mainly performed by the yeast Saccharomyces cerevisiae. But other wine yeasts called non-Saccharomyces may contribute to alcoholic fermentation and modulate the wine aroma complexity. The recurrent problem with the use of these non-Saccharomyces yeasts is their trend to die off prematurely during alcoholic fermentation, leading to a lack of their interesting aromatic properties searched in the desired wine. This phenomenon appears to be mainly due to interactions with S. cerevisiae. These interactions are often negatives but remain unclear because of the species and strain specific response. Among the non-Saccharomyces yeasts, Lachancea thermotolerans is a wine yeast naturally found in grape must and well known as a great L-lactic acid producer and an aromatic molecules enhancer, but its behavior during alcoholic fermentation can be completely different in co-fermentation with S. cerevisiae in function of strain used. Thus, S. cerevisiae/L. thermotolerans couple was used to unravel interactions between these two species during alcoholic fermentation. Thanks to a modified S. cerevisiae strain expressing a GFP allowing discrimination between yeast populations, both yeast viability was monitored by flow cytometry in pure and sequential fermentations of grape must with or without cell-cell contact. This reveal a decrease in cell viability for S. cerevisiae in both conditions with a greater decrease in case of cell-cell contact. Investigating the nature of the interactions, our results demonstrate a competition between species for nitrogen compounds, oxygen and for the first time a competition for must sterols. Volatile compounds analysis revealed changes in sequential fermentations compared to pure fermentations and showed also that cell-cell contact modify yeast metabolism since the volatile compound profile was significantly different from sequential fermentation without cell-cell contact. Yeast metabolism modifications associated with cell-cell contact were confirmed further by analyzing the exo-metabolome of all fermentations by FT-ICR-MS analysis. These analyses show for the first time a specific metabolite production and quantitative metabolite changes linked to each fermentation condition. This study shows that cell-cell contact not only impact cell viability as already reported but deeply changes the yeast metabolism.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Clément Petitgonnet, Géraldine L.Klein, Chloé Roullier-Gall, Philippe Schmitt-Kopplin, Beatriz Quintanilla-Casas, Stefania Vichi, Diane Julien-David, Hervé Alexandre

Helmholtz Zentrum Muenchen, Research unit Analytical BioGeoChemistry, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany 
Technische Universität Muenchen, Analytical Food Chemistry, Alte Akademie 10, 85354 Freising, Germany 
Nutrition, Food Science and Gastronomy Department, INSA – XaRTA (Catalonian Reference Network on Food Technology), University of Barcelona, Santa Coloma de Gramenet, Spain 
Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France

Contact the author

Keywords

Interactions, Yeast, Flow cytometry, Exo-metabolome 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

The effectiveness of proximal remote sensors in plant water status evaluation of grapevine

Extensive studies have been conducted on grapevine responses to water deficit, but these responses are difficult to generalise since numerous factors can influence the response(s), including genotype, developmental stage, soil, climate, and season.

Management of grapevine water status with the DSS Vintel® provides evidence of sustainable irrigation strategies while maintaining wine quality of Pinot gris in Friuli-Venezia Giulia region, NE italy

Deficit irrigation strategies can be valuable means to improve grape quality while saving important amounts of water. A simple way to use deficit irrigation can be based on irrigating a vineyard with a determined level of crop evapotranspiration. Using a precise physiological parameter indicating water status, irrigation could be managed to maintain a specific pre-dawn leaf water potential.

A GIS Analysis of New Zealand Terroir

This paper summarises a national survey of the geological setting of vineyards in New Zealand. We also provide an overview of climate, slope, aspect and varietals planted in New Zealand vineyards as a whole and for some individual regions.

De novo Vitis champinii whole genome assembly allows rootstock-specific identification of potential candidate genes for drought and salt tolerance

Vitis champinii cultivars Ramsey and Dog-ridge are main choices for rootstocks to adapt viticulture in semi-arid and arid regions thanks to their distinctive tolerance to drought and salinity. However, genetic studies on non-vinifera rootstocks have heavily relied on the grapevine (Vitis vinifera) reference genome, which difficulted the assessment of the genetic variation between rootstock species and grapevines. In the present study, this limitation is addressed by introducing a novo phased genome assembly and annotation of Vitis champinii. This new Vitis champinii genome was employed as reference for mapping RNA-seq reads from the same species under drought and salt stresses, and for comparison the same reads were also mapped to the Vitis vinifera PN40024.V4 reference genome. A significant increase in alignment rate was gained when mapping Vitis champinii RNA-seq reads to its own genome, compared to the Vitis vinifera PN40024.V4 reference genome, thus revealing the expression levels of genes specific to Vitis champinii. Moreover, differences in coding sequences were observed in ortholog genes between Vitis champinii and Vitis vinifera, which therefore challenges previous differential expression analyses performed between contrasting Vitis genotypes on the same gene from the Vitis vinifera genome. Genes with possible implications in drought and salt tolerance have been identified across the genome of Vitis champinii, and the same genomic data can potentially guide the discovery of candidate genes specific from Vitis champinii for other traits of interest, therefore becoming a valuable resource for rootstock breeding designs, specially towards increased drought and salinity due to climate change.

Understanding wine as a sensory, emotional, and cognitive experience to promote and communicate conscious consumption

In the complex scenario that the wine industry and its promotion are currently facing, this research proposes a theoretical expansion of the traditional model used to understand the wine experience, namely the classic sensory, emotional and cognitive triad, moving toward a multidimensional approach that also incorporates cultural, symbolic and contextual dimensions in order to comprehend the conscious experience.