OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Research on the origin and the side effects of chitosan stabilizing properties in wine

Research on the origin and the side effects of chitosan stabilizing properties in wine

Abstract

Fungal chitosan is a polysaccharide made up of glucosamine and N-acetyl-glucosamine and derived from chitin-glucan of Aspergillus niger or Agaricus bisporus. Fungal chitosan has been authorized as an antiseptic agent in wine since 2009 (OIV) and in organic wine in 2018. At the maximum dose of 10g/hl, it was shown to eliminate Brettanomyces bruxellensis, the main spoilage agent in red wines. Fungal chitosan is highly renewable, biocompatible (ADI equivalent to sucrose) and non-allergenic. However, winemakers often prefer to use sulfites (SO2), though sulfites are classified as priority food allergens, than chitosan. Indeed, many conflicting reports exist regarding its efficiency and its side effects towards beneficial wine microorganisms or wine taste. These contradictions could be explained by the heterogeneity of the fungal chitosan lots traded, the diversity of the wines (chemical composition, winemaking process), but also, by the recently highlighted huge genetic diversity prevailing in wine microbial species. 

The CHITOWINE project (ANR 17-CE21-0006) is based on the collaboration of three academic partners, a technology transfer unit and an industrial partner. It primarily aims to better define the potential and limitations of fungal chitosan use as an antimicrobial agent in wine. The work will first enable to better define the spectrum of fungal chitosan through the screening of a large microbial collection representative of the inter- and intra-specific diversity of wine ecosystem (more than 200 strains in 17 species of yeasts and bacteria). The chemical characteristics essential to the antiseptic activity of fungal chitosan (degree of acetylation, molecular weight, solubility and charge) and the influence of extrinsic parameters of reaction (pH, temperature, and dose) will be also evaluated. In addition, the physiological effects of chitosan will be sought through biochemical, microscopic and transcriptomic tests, to identify, if possible, the molecular targets of chitosan and to understand the sensitivity differences observed, between inter or intra species and between strains in the same species. Based on these results, improved use recommendation will be proposed and evaluated. Analytical methods to guide chitosan use will be developed and optimized.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Marguerite Dols-Lafargue, Margot Paulin, Cécile Miot-Sertier, olivier Claisse, Patricia Ballestra, Warren Albertin-Leguay, Isabelle Masneuf Pomarède, Axel Marchal, Clément Brasselet, Cédric Delattre, Guillaume Pierre, Pascal Dubessay, Christine Gardarin, Philippe Michaud, Thierry Doco, Joana Coulon, Arnaud Massot, Lucie Dutilh, Amélie Vallet-Courbin, Julie Maupeu

Unité de recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France 

Contact the author

Keywords

chitosan, antiseptic, efficiency, side-effects 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Effect of post-harvest ozone treatment on secondary metabolites biosynthesis and accumulation in grapes and wine

The actual demand by consumers for safer and healthier food and beverage is pushing the wine sector to find alternative methods to avoid the use of sulphur dioxide in winemaking. Ozone is already used in the wine industry to produce sulphur dioxide-free wines through the patented method Purovino®.

Estimating grapevine water status: a combined analysis of hyperspectral image and 3d point clouds

Mild to moderate and timely water deficit is desirable in grape production to optimize fruit quality for winemaking. It is crucial to develop robust and rapid approaches to assess grapevine water stress for scheduling deficit irrigation. Hyperspectral imaging (HSI) has the potential to detect changes in leaf water status, but the robustness and accuracy are restricted in field applications.

Oligosaccharides from Vitis vinifera grape seeds: a focus on gentianose as a novel bioactive compound

AIM. Grape seeds (Vitis vinifera) are among the main constituents of grape pomace, also exploited in ingredients for nutraceutics and cosmeceutics, particularly regarding the phenolic fraction. The macromolecules of grape/wine include polyphenols, proteins and polysaccharides.

Holistic characterization of Sangiovese clones 

Sangiovese is one of Italy’s most cultivated grape varieties, and currently, over 130 different clones are registered in the national register of grape varieties. However, despite the sangiovese genome having been re-sequenced, limited molecular and genomic information is still available for this cultivar. The present study investigates the complexity of genotype-environment interactions of ten different Sangiovese clones, cultivated in the Chianti Rufina DOCG district over five consecutive vintages (2016-2020).

Viticultural landscape: history of a challenging coexistence between grapevines and humans 

Vitis vinifera is the most grown grapevine species, which originated about 6 million years ago in the trans-caucasian area as the ancestral (wild) type v. Vinifera spp. Sylvestris. On the other hand, the human being (homo sapiens) is much younger since he originated about 300.000 years ago in north africa.