OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analysis and composition of grapes, wines, wine spirits 9 Identification of cis-2-methyl-4-propyl-1,3-oxathiane as a new volatile sulfur compound (VSC) in wine

Identification of cis-2-methyl-4-propyl-1,3-oxathiane as a new volatile sulfur compound (VSC) in wine

Abstract

Despite their trace concentrations, volatile sulfur compounds (VSCs) are an important category of flavour-active compounds that significantly contribute to desirable or undesirable aromas of many foods and beverages. In wines, VSCs in the form of polyfunctional thiols, notably 3-sulfanylhexan-1-ol (3-SH), 3-sulfanylhexyl acetate (3-SHA), and 4-sulfanyl-4-methyl-pentan-2-one (4-MSP), possess extremely low olfactory thresholds (≈ ng/L) and pleasant “tropical aroma” notes. They have received much attention with respect to their sensory contributions, quantitative occurrences, biogenesis, and thiol management through viticulture and winemaking. However, the fate of these potent volatiles are still not fully understood.

In this work [1], the fate of 3-SH in wine was probed based on the potential sensory and chemistry interactions between 3-SH and acetaldehyde, which led to the identification of cis-2-methyl-4-propyl- 1,3-oxathiane (cis-1) in wine for the first time. Subsequently, a stable isotope dilution assay (SIDA) using headspace–solid-phase microextraction with gas chromatography and mass spectrometry (HS–SPME GC– MS) was developed. A range of parameters was optimised, a deuterated internal standard was synthesised, and the method was fully validated and applied to the quantitation of cis-1 in wines. The aroma detection threshold of 1 was also determined.

The existence of cis-1 in Sauvignon blanc wines from a laboratory-scale fermentation trial was revealed by mass spectral comparison to an authentic standard, linear retention indices of naturally present cis- 1 on two GC columns, and co-injection experiments. Challenges were faced when analysing commercial wine samples due to unknown co-eluting interferences in some wines. After employing d4-1 as the internal standard and evaluating additional capillary column phases, a sensitive SIDA HS–SPME GC–MS method was developed and applied to a survey of commercial wines. Interestingly, trans-1 was not detected whereas cis-1 ranged from undetectable to 460 ng/L, which highly correlated (r = 0.72) to the concentrations of 3-SH, determined in the same wines by HPLC–MS/MS after derivatisation. The aroma detection threshold of 1* in a neutral Australian white wine was found to be 7.1 μg/L. Although cis-1 concentrations in the studied wines were below the odour detection threshold of 1, our results suggest a potential link from cis-1 to the potent VSC 3-SH, and more research is required to gain a better understanding of the importance of cis-1 in wine, from both chemistry and sensory perspectives. The identification and method development work will be presented along with additional experiments involving cis-1 in wine.

references:

[1]. Chen, L., D.L. Capone, and D.W. Jeffery, Identification and Quantitative Analysis of 2-Methyl-4-propyl-1,3-oxathiane in Wine. Journal of Agricultural and Food Chemistry, 2018, 66 (41), 10808–10815.

* Using a commercial standard consisting of 85% cis-1 and 15% trans-1.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Liang Chen, Dimitra Capone, David Jeffery

The ARC Training Centre for Innovative Wine Production, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064, Australia 

Contact the author

 

Keywords

wine aroma, tropical fruit, 3-sulfanylhexan-1-ol, stable isotope dilution assay

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

The adaptative capacity of a viticultural area (Valle Telesina, Southern Italy) to climate changes

The viticulture aiming at the production of high quality wine is very important for the landscape conservation, because it allows to combine high farmer income with soil conservation

Sensory and physicochemical impact of proanthocyanidic tannins on red wine fruity aroma

AIM: Previous research on the fruity character of red wines highlighted the role of esters [1]. Literature provides evidence that, besides these esters, other compounds that are not necessarily volatiles may have an important impact on the overall fruity aroma of wine, contributing to a masking effect [2][3]. The goal of this work was to assess the olfactory consequences of a mixture between esters and proanthocyanidic tannins, through sensory and physico-chemical approaches.

Fingerprinting as approach to unlock black box of taste

The black box of taste is getting unlocked. The starting point is to distinguish taste from tasting. Consider taste as a product characteristic; tasting is a sensorial activity. Consequently, taste can be studied on a molecular level and therefore be assessed more objectively, whilst tasting is a human activity and by definition subjective.

Glutathione content evolution during spontaneous alcoholic fermentations of Sangiovese grapes

Glutathione is a tripeptide (γ-Glu-Cys-Gly), which can occur in grapes, in must and in wine prevalently in the reduced form as well as in the oxidized form as glutathione disulfide. The importance of the reduced form of glutathione lies in its antioxidant activity. In must, it limits browning by reducing o-quinones produced by polyphenol oxidase activity on hydroxycinnamic acids; in wine, it exerts a protective effect on various aromatic compounds. Glutathione concentration in wine is lower than in grape juice and variable as it depends on several factors, ranging from the native content of grapes to winemaking technique.

Ethyl esters interact with the major wine Thaumatin Like Protein VVTL1

The interactions among aromatic compounds and proteins is an important issue for the quality of foods and beverages. In wine, the loss of flavor after vinification is associated to bentonite treatment and this effect can be the result of the removal of aroma compounds which are bound wine proteins. This phenomenon was recently demonstrated for long chain fatty acids and their ethyl esters (1). Since these latter compounds are spectroscopically silent, their association with proteins is not easy to measure.