OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical developments from grape to wine, spirits : omics, chemometrics approaches… 9 Strategies for sample preparation and data handling in GC-MS wine applications

Strategies for sample preparation and data handling in GC-MS wine applications

Abstract

It is often said that wine is a complex matrix and the chemical analysis of wine with the thousands of compounds detected and often measured is proof. New technologies can assist not only in separating and identifying wine compounds, but also in providing information about the sample as a whole. 

Information-rich techniques can offer a fingerprint of a sample (untargeted analysis), a comprehensive view of its chemical composition. Applying statistical analysis directly to the raw data can significantly reduce the number of compounds to be identified to the ones relevant to a particular scientific question. More data can equal more information, but also more noise for the subsequent statistical handling. 

Therefore, strategies to reduce the some of the data can already be applied at the chemical analysis stage without loss of information. 

Using GCMS as analysis tool, an experiment was designed to evaluate on one hand different sample preparation methods, and on the other hand data handling strategies for the results. Twenty-six commercial wines from three cultivars (Chenin Blanc, Chardonnay, Sauvignon Blanc) and two winemaking styles (with and without wood contact) were subjected to three types of sample preparation (liquid/liquid extraction with three solvents, SPE on two stationary phases, HS-SPME on four fibres) before injection into GCMS. The various chemistries and polarities of the extraction solvents and stationary phases used resulted in different types of compounds being extracted from the wines. 

The TIC data was exported as a continuous signal (the chromatogram itself), as integrated peaks identified by their RTs, and as a (RT_m/z, abundance) matrix. Each type of data was submitted to PCA to underscore any natural grouping in the data. OPLS-DA and S-plots were subsequently used to determine the signals associated to cultivar discrimination and style. The raw data was revisited, and MS spectra extracted for the signals of interest, leading to the identification of the drivers (ions/compounds) for cultivars and style. 

The strategies for sample preparation and data extraction were evaluated based on their feasibility and potential for data mining. Additionally, this type of work can be of further use as a basis for developing screening or targeted analyses, based on the groups of analytes extracted during various sample preparation procedures.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Astrid Buica, Cody Williams, Mpho Mafata, Andrei Medvedovici, Costel Sarbu, Lucky Mokwen 

Institute for Grape and Wine Sciences, Stellenbosch University, South Africa 
Department of Viticulture and Oenology, Stellenbosch University, South Africa 
Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, Romania 
Department of Analytical Chemistry, Faculty of Chemistry and Chemical Engineering, University Babes-Bolyai, Cluj-Napoca, Romania 
Central Analytical Facility, Stellenbosch University, South Africa 

Contact the author

Keywords

data mining, GCMS, sample preparation, untargeted analysis

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

INTEGRAPE guidelines and tools: an effort of COST Action CA17111

INTEGRAPE was a European interdisciplinary network for “data integration to maximize the power of omics for grapevine improvement” (CA17111, https://integrape.eu/), funded by the European COST Association from September 2018 to 2022. This Action successfully developed guidelines and tools for data management and promoted the best practices in grapevine omics studies with a holistic future vision of: “Imagine having all data on grapevine accessible in a single place”.

Impact of elemental sulfur (S0) residues in Sauvignon blanc juice on the formation of the varietal thiols 3-mercapto hexanol and 3-mercaptohexyl acetate

Elemental sulfur is a fungicide used by grape growers to control the development of powdery mildew, caused by the fungus Erysiphe necator. This compound is effective, cheap and has a low toxicity with no withholding period recommended. However, high levels of S0 residues in the harvested grapes can lead to the formation of reductive sulfur compounds that can impart taints and faults to the wine. Hydrogen sulphide (H2S) is a very volatile and unpleasant sulfur compound which formation is connected to high residues of S0 in juice (10 – 100 mg/L).

Climate change projections to support the transition to climate-smart viticulture

The Earth’s system is undergoing major changes through a wide range of spatial and temporal scales as a response to growing anthropogenic radiative forcing, which is pushing the whole system far beyond its natural variability. Sources of greenhouse gases largely exceed their sinks, thus leading to a strengthened greenhouse effect. More energy is thereby being supplied to the system, with inevitable shifts in climatic patterns and weather regimes. Over the last decades, these modifications have been manifested in the full statistical distributions of the atmospheric variables, with dramatic changes in the frequency and intensity of extremes. Natural hazards, such as severe droughts, floods, forest fires, or heatwaves, are being triggered by extreme atmospheric events worldwide, thus threatening human activities. Viticultculture is not only exposed to changing climates but is also highly vulnerable, as grapevine phenology and physiological development are strongly controlled by atmospheric conditions. Therefore, the assessment of climate change projections for a given region is critical for climate change adaptation and risk reduction in viticulture. By adopting timely and suitable measures, the future sustainability and resiliency of the sector can be fostered. Climate-grapevine chain modelling is an essential tool for better planning and management. However, the accuracy of the resulting projections is limited by many uncertainties that must be duly taken into account when transferring knowledge to stakeholders and decision-makers. Climate-smart viticulture will comprise ensembles of locally tuned strategies, envisioning both adaptation and mitigation, assisted by emerging technologies and decision-support systems.

Impact of glutathione-rich inactivated yeast on wine chemical diversity

Glutathione-rich inactivated dry yeasts (GSH-IDY) are claimed to accumulate intracellularly and then release glutathione in the must.

On the losses of dissolved CO2 from laser-etched champagne glasses under standard tasting conditions

Under standard champagne tasting conditions, the complex interplay between the level of dissolved CO2 found in champagne, its temperature, the glass shape, and the bubbling rate, definitely impacts champagne tasting by modifying the neuro-physico-chemical mechanisms responsible for aroma release and flavor perception. Based on theoretical principles combining heterogeneous bubble nucleation, ascending bubble dynamics and mass transfer equations, a global model is proposed (depending on various parameters of both the wine and the glass itself), which quantitatively provides the progressive losses of dissolved CO2 from laser-etched champagne glasses.