OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 The sensory profile of astringency: application on Sangiovese wines

The sensory profile of astringency: application on Sangiovese wines

Abstract

One of the main sensory characteristics of red wine is astringency, which can be defined as drying, puckering and roughing of the oral cavity after the exposure to tannin-rich wines. Tannins are the main responsible for the intensity of the sensation as well for the qualitative aspects of astringency. However, the total intensity of the sensation is not sufficient to fully characterize red wine astringency. Thirty-three different subqualities (Gawel et al. 2001) had been generated to describe the complexity of this multi perceptual phenomenon, which includes both tastes, tactile, and flavor sensations. So, how to feel tannins during tasting? In this study, we used a sensory method that combine the training for astringency subqualities with touch-standards and the CATA questions, usually applied in consumer science, to evaluate the astringency subqualities of different typologies of Sangiovese: commercial and experimental wines. Sangiovese wine represents a good model for the study of astringency because it is generally characterized by a high content of low and high molecular weight proantocyanidins. Commercial wines differed for percentage of Sangiovese (80-100 %) grapes used in winemaking and for designation (Toscana TS, Chianti Classico CH, Chianti Riserva CR, Morellino di Scansano MS). The astringency profile of wines changed as the percentage of Sangiovese increased. Positive subqualities as velvet, soft, mouthcoat, and rich highly characterized the Sangiovese wine belonging to TS and CR designations. Moreover, the astringency subqualities related to blending or wood aging, represented the drivers of quality of commercial Sangiovese wines. Therefore, four experimental wines (SANG1, SANG2, SANG3, SANG4) made with 100 % Sangiovese grapes in different wineries of Tuscany were also used to evaluate the subqualities of Sangiovese wine. At 8th months post-harvest (8 mph) wines were mainly characterized by green (Cf=40-60 %), dry (35 %), and adhesive (35-55 %) terms, indicating that Sangiovese wine tannins were excessively astringent and acid (green), causing a drying and sticking sensation in mouth. In order to follow the evolution of the astringency profile of Sangiovese during time, wines have been evaluated at 14-16-20 mph. The SANG1 wine at 14 and 16 mph was characterized by hard tannins, which at 20 mph turned to corduroy and rich subqualities. The SANG2 wine at 14 and 16 mph was felt as satin and silk, while at 20 mph became rich, soft and mouthcoat. The SANG3 wine was silk, corduroy and persistent after 14-16 mph, and velvet and full-body after 20 mph. The SANG4 was velvet and grainy at 14th mph, rich and soft at 16th mph, and full-body, mouthcoat and persistent after 20 months. Finally, the astringency profile of Sangiovese wine has changed from an unripe astringency towards rich, full-body and mouthcoating sensations during aging. By means of the described sensory method, a detailed evaluation of the astringency profile of Sangiovese was made, and the evolution of the qualitative features of Sangiovese tannins during aging has been revealed for the first time.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Alessandra Rinaldi, Alliette Gonzalez, Luigi Moio

1. Universitàdegli Studi di Napoli Federico II, Dipartimento di Agraria, Sezione di Scienze della Vigna e del Vino 
2. Biolaffort, 126 Quai de la Souys, 33100 Bordeaux, France. 

Contact the author

Keywords

astringency, subqualities, Sangiovese, aging

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Optimisation de la fertilisation du Cot sur le Causse de l’Appellation d’Origine Contrôlée Cahors

The Appellation d’Origine Contrôlée area of ​​Cahors (Lot) covers an area of ​​21,700 ha, spread over 45 municipalities, of which only 4,300 are planted with vines. The main grape variety of this AOC is the Cot noir which represents 70% of the grape varieties, thus giving their typicality to the wines of this region; but despite this importance, to our knowledge, its physiology has remained relatively unstudied.

Fertilization Lysimeters provide new insights into the needs and impacts of N nutrition on table grape performance and fruit yield and quality

Table grape production requires adequate nitrogen (N) supply to sustain vine performance and obtain high yields. However, excess agricultural N fertilization is a major source of groundwater contamination and air pollution. Therefore, there is a strong need for empirically based precision N fertilization schemes in vineyards, for optimizing grape yield and quality while minimizing their environmental impact.
Our aim was to unequivocally quantify table grape N requirements, elucidate the drivers of daily N uptake, and quantify the relationship between fertigation N levels and vine growth, fruit yield, composition, and quality. For this, forty ‘Early Sweet’ (early-maturing, white) and ‘Crimson seedless’ (late-maturing, red) vines were grown in 500L drainage-lysimeters for 2 fruiting seasons, while subjected to five continuous N fertigation treatments ranging from 10 to 200 ppm.

Growers’ attitudes towards organic certification: the case of Central Otago, New Zealand

New Zealand viticulture has long been characterised by sustainable grape growing practices as promoted by Sustainable Winegrowing New Zealand (SWNZ) as well as by Organic Viticulture.

Sensory and consumer perceptions, and consumption barriers of low and no-alcohol wines in Trentino/Alto Adige

The growing demand for non-alcoholic beverages, driven by health-conscious consumers and shifting social norms, has positioned dealcoholized wines as a promising alternative in the global beverage industry (Akhtar et al., 2025, in press; Kakroo, 2024).

Settling precocity and growth kinetics of the primary leaf area: two indicative parameters of grapevine behaviour

Le comportement de la vigne en terme de fonctionnement thermique et hydrique, influe de manière directe sur la qualité des baies de raisin. L’effet du terroir peut être perçu à travers l’étude de paramètres tels que la précocité, la mise en place de la surface foliaire ou la vigueur. Une expérimentation a été conduite en Val de Loire sur le cépage chenin dans le but de mieux comprendre le rôle des variables liées au terroir sur la croissance et le développement de la vigne et in fine sur la qualité des baies.