OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 The sensory profile of astringency: application on Sangiovese wines

The sensory profile of astringency: application on Sangiovese wines

Abstract

One of the main sensory characteristics of red wine is astringency, which can be defined as drying, puckering and roughing of the oral cavity after the exposure to tannin-rich wines. Tannins are the main responsible for the intensity of the sensation as well for the qualitative aspects of astringency. However, the total intensity of the sensation is not sufficient to fully characterize red wine astringency. Thirty-three different subqualities (Gawel et al. 2001) had been generated to describe the complexity of this multi perceptual phenomenon, which includes both tastes, tactile, and flavor sensations. So, how to feel tannins during tasting? In this study, we used a sensory method that combine the training for astringency subqualities with touch-standards and the CATA questions, usually applied in consumer science, to evaluate the astringency subqualities of different typologies of Sangiovese: commercial and experimental wines. Sangiovese wine represents a good model for the study of astringency because it is generally characterized by a high content of low and high molecular weight proantocyanidins. Commercial wines differed for percentage of Sangiovese (80-100 %) grapes used in winemaking and for designation (Toscana TS, Chianti Classico CH, Chianti Riserva CR, Morellino di Scansano MS). The astringency profile of wines changed as the percentage of Sangiovese increased. Positive subqualities as velvet, soft, mouthcoat, and rich highly characterized the Sangiovese wine belonging to TS and CR designations. Moreover, the astringency subqualities related to blending or wood aging, represented the drivers of quality of commercial Sangiovese wines. Therefore, four experimental wines (SANG1, SANG2, SANG3, SANG4) made with 100 % Sangiovese grapes in different wineries of Tuscany were also used to evaluate the subqualities of Sangiovese wine. At 8th months post-harvest (8 mph) wines were mainly characterized by green (Cf=40-60 %), dry (35 %), and adhesive (35-55 %) terms, indicating that Sangiovese wine tannins were excessively astringent and acid (green), causing a drying and sticking sensation in mouth. In order to follow the evolution of the astringency profile of Sangiovese during time, wines have been evaluated at 14-16-20 mph. The SANG1 wine at 14 and 16 mph was characterized by hard tannins, which at 20 mph turned to corduroy and rich subqualities. The SANG2 wine at 14 and 16 mph was felt as satin and silk, while at 20 mph became rich, soft and mouthcoat. The SANG3 wine was silk, corduroy and persistent after 14-16 mph, and velvet and full-body after 20 mph. The SANG4 was velvet and grainy at 14th mph, rich and soft at 16th mph, and full-body, mouthcoat and persistent after 20 months. Finally, the astringency profile of Sangiovese wine has changed from an unripe astringency towards rich, full-body and mouthcoating sensations during aging. By means of the described sensory method, a detailed evaluation of the astringency profile of Sangiovese was made, and the evolution of the qualitative features of Sangiovese tannins during aging has been revealed for the first time.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Alessandra Rinaldi, Alliette Gonzalez, Luigi Moio

1. Universitàdegli Studi di Napoli Federico II, Dipartimento di Agraria, Sezione di Scienze della Vigna e del Vino 
2. Biolaffort, 126 Quai de la Souys, 33100 Bordeaux, France. 

Contact the author

Keywords

astringency, subqualities, Sangiovese, aging

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Options to replace or reduce the sulphite content in Tannat red wines produced with minimal intervention

Several Uruguayan wineries have begun to produce wines with minimal intervention, to increase the sustainability of their vineyards and wines. These wines are characterized by the minimum intervention in the management of the vineyard, its harvest, vinification, conservation and aging1,2. Sulfur dioxide (SO2) is not used or is used in reduced doses, although chitosan can be substituted or supplemented1. The objective of this research is to evaluate SO2 reduction or replacement options adapted to the production of Tannat red wines with minimal intervention. Vinification of the Tannat grapes with autochthonous yeasts (LN) was carried out during the 2023 vintage.

Are biochemical markers the key to predicting wine aroma balance?

Wine aroma quality is a complex interplay of factors like terroir, vinification techniques, that modulate aroma compound composition.

Discriminant value of soil properties for terroir zoning

Environmental analysis (climate, vegetation, geomorfoloy-lanscape, lithology and soil) and its integration in a quality index taking the Appellation of Origin as the sole universe are used as general methodology for terroir zoning in Spain (Sotés and Gómez-Miguel, 1986-2005). This methodology is also applied to specific aspects of different Spanish Appellations of Origin (size, distribution and landscape peculiarities and vine occupation index).

Effect of application of kaolin and pinolene on grape berry cell death, berry shrinkage, and ethanol accumulation

Cell death in Vitis vinifera L. berries late in ripening and berry shrinkage (loss of mass) can decrease yield and reduce grape quality in cultivars such as Cabernet Sauvignon

Environmental sustainability in the production of grappa with the use of mould-resistant grape varieties: the aroma characterisation of distillates

Grappa is the most important italian spirit and its production includes elements of history, tradition, and culture of the transalpine country. In accordance with EU laws, grappa is obtained from the fermentation and distillation of the pomace, eventually added with fermentation lees and water. Grappa is one of the richest fruit distillates in volatile compounds that confer to the product its characteristic flagrance. The aroma is largely due to the volatile compounds present in the raw materials, in particular alcohols, esters and carbonyl compounds formed during the alcoholic fermentation, but also to grape aromas such as terpenols and norisoprenoids, that confers grappa the distinctive floral scents.