terclim by ICS banner
IVES 9 IVES Conference Series 9 VitExpress, an open interactive transcriptomic platform for grapevine

VitExpress, an open interactive transcriptomic platform for grapevine

Abstract

We developed VitExpress, an open interactive transcriptomic platform for grapevine, using our newly assembled and annotated Chasselas genome as a reference. This platform provides a genome browser and integrated web tools for expression profiling, and a set of statistical tools (StatTools) for the identification of highly correlated genes. The implementation of the correlation finder tool for MybA1, a major regulator of the anthocyanin pathway, identified candidate genes associated with anthocyanin metabolism, whose expression patterns were experimentally validated as discriminating between black and white grapes. These resources and innovative tools for mining genome-related data are anticipated to foster advances in several areas of grapevine research.

DOI:

Publication date: July 6, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Guillaume Madignier1,2, Anis Djari1, Olivia Di Valentin1, Thibault Gillet1, Pierre Frasse1, Amel Djouhri1, Guojian Hu1,2, Sebastien Julliard3, Mingchun Liu4, Yang Zhang4, Farid Regad1, Julien Pirrello1, Elie Maza1,*, and Mondher Bouzayen1,*

1Laboratoire de Recherche en Sciences Végétales–Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, Université Paul Sabatier, Institut Polytechnique de Toulouse, Auzeville Tolosan 31326, France
2Fondation Jean Poupelain, Cognac, Javrezac 16100, France
3Conservatoire du vignoble charentais, Institut de Formation de Richemont, Cherves-Richemont 16370, France
4Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China

Contact the author*

Keywords

Transcriptomic platform, RNA-seq, Statistics, Data mining, Anthocyanin pathway

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Redwine project: how to valorize CO2 and effluents from wineries in vineyards and winemaking with microalgae biomass

Global warming due to greenhouse gases (GHG) has become a serious worldwide concern. The new EU green deal aims to achieve GHG emissions reduction by at least 55% by 2030 and a climate neutral eu economy by 2050. The deal strongly encourages GHG reducing measures at local, national and european levels. The redwine project will demonstrate the technical, economic and environmental feasibility of reducing by, at least, 31% of the CO2 eq.

Contribution of soil and atmospheric conditions to leaf water potential in grapevines

Etant lié au sol et aux conditions atmosphériques, le statut hydrique influence la physiologie de la vigne d’une part, mais joue aussi un role important en ce qui concerne la qualité du raisin et donc du vin d’autre part. Nous avons mesuré, dans la région de Stellenbosch, le statut hydrique sur des pieds de Sauvignon Blanc non irrigués, implantés sur 2 terroirs différents, l’un froid, l’autre plus chaud.

Investigations into the effects of a commercial organic fertilizer and of quality compost on the soil and the vines

The influences of quality compost A+ and of a commercial organic fertilizer based on dry mash from bioethanol production, blackstrap molasses, vinasse, PNC (potato nitrogen concentrate) and CSL (corn steep liquor) on the humus content, on the mineral nitrogen content in the soil, in the must and in the vine leaves, on pruning wood

First disclosure of eugenol precursors in Vitis genus: analytical development and quantification

The main aim of this work was to develop an analytical method to disclosure the
molecular form of eugenol precursor. Indeed eugenol is an important contributor to
Armagnac spirits typicity made with Baco blanc.

Physical-mechanical berry skin traits as powerful indicators of resistance to botrytis bunch rot

The ongoing climate change results in increasing mean air temperature, which is manifested by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased biotic infection pressure. Thus, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality. Since no resistances or candidate genes have yet been described for Botrytis bunch rot (BBR), physical-mechanical traits like berry size and thick, impermeable berry cuticles phenotyped with high-throughput sensors represent novel effective parameters to predict BBR.