terclim by ICS banner
IVES 9 IVES Conference Series 9 OIV 9 OIV 2024 9 Short communications - Oenology, methods of analysis 9 Evaluation of uhph treatment as an alternative to heat treatment prior to the use of proteolytic enzymes on must to achieve protein stability in wine

Evaluation of uhph treatment as an alternative to heat treatment prior to the use of proteolytic enzymes on must to achieve protein stability in wine

Abstract

There are currently enzyme preparations on the market with specific protease activities capable of degrading unstable must proteins and preventing turbidity in white and rosé wines. The main drawback is the need to heat the must at 75ºc for 1-2 minutes to denature the proteins and facilitate enzyme action. The aim of this study is to test whether ultra high pressure homogenisation (uhph) of the must is able to cause the proteins to lose their upper structures and unfold, and thus replace this heat treatment. A white must of the verdejo variety was treated by uhph at 300 mpa and the same must unprocessed by uhph (control must) was included in the study. Different combined treatments (uhph/no uhph, enzyme/no enzyme, tª+enzyme/no tª+enzyme) were programmed with the aim of creating different scenarios to identify the best solution to avoid protein haze and enhance the sensory properties of the wine. All treatments were evaluated in triplicate. In addition to physico-chemical characterisation of the starting must (colour, ipt, ph, fermentable sugars, nfa), wine turbidity, colour, ipt, ph, alcohol content, volatile profile and a protein stability test were analysed to check the effectiveness of the treatments. The results show that uhph treatment is a good alternative to heat treatment of the must when protein haze is to be avoided by using proteolytic enzymes, and without negative sensory impact on wine.

Evaluación del tratamiento uhph como alternativa al tratamiento térmico previo al empleo de enzimas proteolíticas sobre el mosto para lograr la estabilidad proteica del vino

Actualmente existen en el mercado preparados enzimáticos con actividades proteasas específicas capaces de degradar las proteínas inestables del mosto y prevenir el enturbiamiento de vinos blancos y rosados. El principal inconveniente es la necesidad de calentar el mosto a 75ºc durante 1-2 minutos para desnaturalizar las proteínas y facilitar la actuación de las enzimas. El objetivo de este estudio es comprobar si la homogeneización por ultra altas presiones (uhph) del mosto es capaz de provocar que las proteínas pierdan sus estructuras superiores y se desplieguen, y de este modo reemplazar dicho tratamiento térmico. Se trató un mosto blanco de la variedad verdejo por uhph a 300 mpa y se incluyó en el estudio el mismo mosto sin procesar por uhph (mosto control). Se programaron distintos tratamientos combinados entre sí (uhph/no uhph, enzima/no enzima, tª+enzima/no tª+enzima) con el objetivo de crear distintos escenarios que permitieran identificar la mejor solución para evitar las quiebras proteicas y potenciar las propiedades sensoriales del vino. Todos los tratamientos se evaluaron por triplicado. Además de caracterizar físico-químicamente el mosto de partida (color, ipt, ph, azúcares fermentiscibles, nfa), se analizó la turbidez del vino, el color, el ipt, el ph, el grado alcohólico, el perfil de volátiles y se llevó a cabo un test de estabilidad proteica para comprobar la efectividad de los tratamientos. Los resultados demuestran que el tratamiento por uhph es una buena alternativa al tratamiento térmico del mosto cuando se pretenden evitar las quiebras proteicas empleando enzimas proteolíticas, y sin repercusión negativa a nivel sensorial.

Publication date: November 18, 2024

Issue: OIV 2024

Type: Article

Authors

Iris Loira¹, James Walsh¹, Carlos Escott², Juan Manuel del Fresno³, María Antonia Bañuelos⁴, Carmen González³, Antonio Morata³

¹ Dept. Chemistry and Food Technology, ETSIAAB, Universidad Politécnica de Madrid, Avd. Puerta de Hierro, 2, Madrid, Spain
² Dept. Galenic Pharmacy and Food Technology, Veterinary Faculty, Universidad Complutense de Madrid, Madrid, Spain
³ EnotecUPM, Dept. Chemistry and Food Technology, ETSIAAB, Universidad Politécnica de Madrid, Avd. Puerta de Hierro, 2, Madrid, Spain
⁴ EnotecUPM, Dept. Biotechnology, ETSIAAB, Universidad Politécnica de Madrid, Avd. Puerta de Hierro, 2, Madrid, Spain

Contact the author*

Tags

IVES Conference Series | OIV | OIV 2024

Citation

Related articles…

Plastid genomics of Vitis vinifera L. for understanding the molecular basis of  grapevine (Vitis vinifera L.) domestication

The precise molecular mechanisms underlying the domestication of grapevine (Vitis vinifera L.) Are still not fully understood. In the recent years, next-generation sequencing (NGS) of plastid genomes has emerged as a powerful and increasingly effective tool for plant phylogenetics and evolution. To uncover the biological profile of the grapevine domestication process comprehensively, an investigation should encompass both the cultivated varieties (V. vinifera subsp. Vinifera) and their wild ancestors V. vinifera subsp. Sylvestris) across all potential sites of their distribution and domestication.

The legal concept of “cultural heritage” to refurbish the wine sector’s priorities

Following the latest oiv global report (april 26, 2024), the prevailing perception of wine consumption finds itself undergoing one of its most challenging adjustments. It’s plausible to anticipate a shift in the scope of pdo wines towards more human-centered products (wells and stiefel, 2019), necessitating the entire sector to adapt strategies to public interest patterns (touzeau, 2010: 17-31). Previously, a dominant notion of cultural property underscored the value of wine regions; the primary interest revolved around estate owners and retailers, along with vigneron tales.

The influence of RNAi-expressing rootstocks in controlling grey mold on grapevine cultivars

Worldwide, with an average of 6.7 million cultivated hectares, of which exclusively 51% in Europe (faostat, 2021), the production of table and wine grapes is a leading sector, with continued growth in Europe in the area devoted to vine cultivation. during the growing season, most of the plant organs can be susceptible to several fungal and oomycete diseases, leading to important economic losses and causing detrimental effects on fruit quality. the increasingly scarce availability of fungicidal products, often also related to their relative impact on the environment, coupled with the emergence of resistance in the pathogen to these products, make defence increasingly challenging.

Smoke tainted wine – what now?

The frequency of bushfires close to wine regions around the world has increased in the last two decades. The economic losses incurred when grapes and wines are discarded due to ‘smoke taint’ are substantial (i.e., hundreds of millions of dollars). Efforts to mitigate and ameliorate smoke taint are therefore crucial. Chardonnay, rosé and cabernet sauvignon wines made from grapes exposed to smoke during the 2020 wildfires in eastern Australia were subjected to various amelioration techniques: the addition of activated carbons, molecularly imprinted polymers (mips), and a proprietary resin (either directly, or following membrane filtration); spinning cone column (scc) distillation; and finally, transformation into vinegar.

Critical investigation on additions to improve the sensory characteristics of dealcoholized wine

The demand for dealcoholized wine has been progressively increasing in recent years. Moreover, the attention for such products is probably increasing even more. Due to that increasing demand and market awareness the legal authorities are about changing rules for that products. Also, at OIV level, these products are being intensively discussed for certain time. The production of dealcoholized wine bases on wine as initial product. This wine is then reduced by physical methods to an alcohol content of less than 0.5% vol., or in other words, to less than 4g/l of alcohol. There are various technologies are possible for producing dealcoholized wine (Schmitt and Christmann 2019).