Terroir 2014 banner
IVES 9 IVES Conference Series 9 A multilayer interactive web map of the wine growing region carnuntum with emphasis on geochemical and mineralogical zoning

A multilayer interactive web map of the wine growing region carnuntum with emphasis on geochemical and mineralogical zoning

Abstract

During a three-year study the vineyards of the wine-growing region Carnuntum have been investigated for their terroir characteristics (climate, soil, rocks) and major viticulture functions. As an outcome of the study, various thematic layers and geodata analyses describe the geo-environmental properties and variability of the wine growing region and delimit homogenous multilayer mapping units by using a Geographic Information System.

These results have been converted to multilayer web services which are presented with a web map application (http://www.geologie.ac.at/en/research-development/mapping/substrate-floor/naturraum-carnuntum/).

The web map gives access to grouped thematic layers which represent climatic parameters (e.g. HUGLIN-Index, risk of frost), soil physics (e.g. available water capacity), soil chemistry and nutrients, rock geochemistry, geology, mineralogy and apparent resistivity maps. Using the web map interface one is able navigate on-screen to areas of interest and select the desired layers in any combination and transparency for display on aerial images. As the study results are made available to winemakers of the region and to the general public, the web map shall primarily serve as an information tool but is also intended to promote and communicate scientific research for the exploration of winegrowing regions.

The functions of the web map focus on the evaluation of the vertical and lateral variations of rocks and soils. In the study area more than 200 samples were taken by drilling or at sampling pits and analysed for grainsize distribution, clay mineral and bulk mineral content and whole rock geochemistry. By exploratory data analysis of the sample data the parameters were used to compare regional areas and lithostratigraphic units with graphs and descriptive statistics. The results of the exploratory data analysis contribute to the characterization of the stratigraphic units and the zoning of the study region.

DOI:

Publication date: July 31, 2020

Issue: Terroir 2014

Type: Article

Authors

Maria HEINRICH (1), Ingeborg WIMMER-FREY (1), Heinz REITNER (1), Josef EITZINGER (2), Johann GRASSL (3), Gerhard HOBIGER (1), Erwin MURER (4), Herbert PIRKL (5), Julia RABEDER (1), Johann REISCHER (1), Martin SCHIEGL (1) AND Heide SPIEGEL (6)

(1) Geological Survey of Austria, Vienna, Austria,
(2) University of Natural Resources and Applied Life Sciences, Vienna, Austria, 
(3) Carnuntum Wine Region Cooperation, Bruck an der Leitha, Austria,
(4) Federal Agency for Water Management, Petzenkirchen, Austria, 
(5) Technical Office for Geology, Vienna, Austria, 6 Austrian Agency for Health and Food Safety, Vienna, Austria 

Contact the author

Keywords

Carnuntum, Web Map, Mineralogy, Geochemistry, Grainsize Distribution

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Role of Grape-Extractable Polyphenols in the Generation of Strecker Aldehydes and in the Instability of Polyfunctional Mercaptans during Wine Oxidation

Wine longevity is a complex multifactor phenomenon in which the weight of the different factors is not well known. One of the key factors of wine longevity is related to its resistance to oxidation. This property can be defined as the ability of the wine, under an exposure to oxygen, to keep its color, avoid accumulation of acetaldehyde and Strecker aldehydes (SA), and keep as long as

Impact of varying ethanol and carbonation levels on the odor threshold of 1,1,6-trimethyl-1,2-dihydronaphtalene (petrol off-flavor) and role of berry size and Riesling clones

1,1,6-trimethyl-1,2-dihydronaphtelene (TDN) evokes the odor of “petrol” in wine, especially in the variety Riesling. Increasing UV-radiation due to climate change intensifies formation of carotenoids in the berry skins and an increase of TDN-precursors1. Exploring new viticultural and oenological strategies to limit TDN formation in the future requires precise knowledge of TDN thresholds in different matrices. Thresholds reported in the literature vary substantially between 2 µg/L up to 20 µg/L2,3,4 due to the use of different methods. As Riesling grapes are used for very different wine styles such as dry, sweet or sparkling wines, it is essential to study the impact of varying ethanol and carbonation levels.

Metabolic response of vitis vinifera and interspecific vitis sp. varieties to heat stress, water deficit and combined stress, using a metabolomic approach

As greenhouse gas emissions continue to rise, climate projections indicate an increased likelihood of heat waves and drier conditions in canada. these changes pose significant challenges to grapevine cultivation, particularly during critical growth stages such as new plantings. interspecific hybrid grape varieties, developed through different breeding programs that combine vitis vinifera with more robust species like v. riparia and v. labrusca varieties, are often touted for their potential resilience to environmental stress.

The use of δ13C as an indicator of water use efficiency for the selection of drought tolerant grapevine varieties

In the context of climate change with increasing evaporative demand, understanding the water use behavior of different grapevine cultivars is of critical importance. Carbon isotope discrimination (δ13C) measurements in wine provide a precise and integrated assessment of the water status of the vines during the sugar accumulation period in grape berries. When collected over multiple vintages on different cultivars, δ13C measurements can also provide insights into the effects of genotype on water use efficiency.

Investigating the conceptualization and practices linked to peppery notes in Syrah red wines by French winemakers from different regions

The peppery attribute is often used to describe the aroma of Syrah wines. Rotundone was identified as the main aroma compound responsible for these notes. A significant percentage of anosmic respondents to this molecule was reported in previous studies. However, in most cases, these anosmic respondents, formally tested through three-alternative forced choice (3AFC), frequently declare being able to perceive peppery notes in wines. The main objective of this study was to investigate how anosmic French producers from two different regions conceptualize the peppery notes in Syrah red wines, and how they link it to production practices in comparison with non-anosmic producers.