Terroir 2014 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2014 9 Grape growing climates, climate variability 9 Impacts of environmental variability and viticultural practices on grapevine behaviour at terroir scales

Impacts of environmental variability and viticultural practices on grapevine behaviour at terroir scales

Abstract

Climate change poses several challenges for the wine-industry in the 21st century. Adaptation of viticultural and winemaking practices are therefore essential to preserve wine quality and typicity. Given the complex interactions between physical, biological and human factors at terroir scales, studies conducted at these fine scales allow to better define the local environment and its influences on grapevine growth and berry ripening. Accordingly, they lead to a greater understanding of the potential future impacts of climate change and adaptation strategies necessary at different spatial and temporal scales. Within the context of climate change, this paper presents the impacts of the local environment and viticultural practices on grapevine behaviour in the mid-Loire Valley winegrowing region, France, namely in the AOP Coteaux du Layon (variety: Chenin) and the AOP Saumur Champigny (variety: Cabernet franc). Both areas were equipped with climatic instruments (weather stations, temperature sensors and rain gauges) and during the growing season, phenological observations and berry composition analyses were effectuated. A strong spatial variability in temperatures and bioclimatic indices was observed within the vineyards. This variability, related to altitude, aspect and nearness to river, was even more evident during extreme events, such as risk of spring frost. Overall, the local climate variability in relation with soil characteristics, notably water holding capacity, was related to grapevine growth and berry composition. Vineyard plots with greater heat accumulation had earlier phenological stages and higher maturity indices. These results illustrate that adaptation solutions to climate change do exist at local scales, in terms of spatial temperature variability, soil properties and viticultural practices, particularly those related to soil management strategies. As adaptation to climate change is essential, these results show that it is necessary to conduct studies at fine terroir scales in order to better understand the spatial variability of local climate and its influences on grapevine behaviour. 

DOI:

Publication date: August 11, 2020

Issue: Terroir 2014

Type: Article

Authors

Etienne NEETHLING (1,2), Théo PETITJEAN (1), Gérard BARBEAU (1), Hervé QUÉNOL (2)

(1) INRA UE 1117, Vigne et Vin, UMT Vinitera², 42, rue Georges Morel, Beaucouzé, France 
(2) LETG-COSTEL, UMR 6554 CNRS, Université de Rennes 2, Place du Recteur Henri Le Moal, Rennes, France 

Contact the author

Keywords

Spatial variability, climate, soil, viticulture, terroir, local scales, adaptation, climate change

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Lead levels in fortified wines

AIM The main lead exposure route is the intake of contaminated food, water, and alcoholic beverages, in particular wine. At the gastric level, Pb is transformed into a soluble compound which, when conveyed into the bloodstream, is the long-term cause of saturnism, intoxication with neurotoxic, nephrotoxic and hematopoietic effects, and with the neurological developmental delay of children. Pb is classified by the International Agency for Research on Cancer as a 2A class, possible carcinogenic to humans. In an opinion on possible health risks, CONTAM considered that cereals, vegetables, drinking water, and wine give a greater contribute to dietary exposure to Pb in Europe. Large quantities of wine, beer, and other alcoholic products drinking can increase daily Pb intake above the maximum permitted levels.

Viticultural potential assessment and its spatial delineation analysis in Goriška Brda viticultural area

Viticultural potential has a complex conditioning, determined by relief,
soil, climate and lithology. Delineation of viticultural potential from vineyard areas is essential for the purpose to collect the necessary data for viticultural zoning. Using this data, we can achieve greater yield quality, which is the most important criteria in viticulture. The main purpose of this research is
characterizing of viticultural potential and zoning of homogeneous viticultural zones in Goriška Brda region by assessing the suitability of defined ecological factors.

Photoprotective extracts from agri-food waste to prevent the effect of light in rosé wines 

Light is responsible for adverse reactions in wine including the formation of unpleasant flavors, loss of vitamins or photodegradation of anthocyanins. Among them, the riboflavin degradation leads to the formation of undesirable volatile compounds, known as light-struck taste. These photo-chemical reactions could be avoided by simply using opaque packaging. However, most rosé wines are kept in transparent bottles due to different commercial reasons. Some agri-food waste extracts have been studied for their photoprotective action which turn to be highly correlated with phenolic content [1].

Physiological response of new cultivars resistant to fungi confronted to drought in a semi-arid Mediterranean area

Water is one of the most limiting factors for viticulture in Mediterranean regions. Former researches showed that water shortage hampers both vegetative and reproductive developments. INRA is running programs to breed varieties carrying QTL of tolerance to major fungi, i.e. powdery and downy mildews. Some varieties have been already certified or are close to be certified. However, little is known about the response of these varieties to water deficit, which behavior is critical for their development. This study characterized physiological responses of 4 new varieties to water deficit and described relationship between them.

What about oxygen transfer during wine aging in barrels?

During wine aging, several complex phenomena of gas transfer take place in barrels due to the wine/oak contact. The efficiency of this gas transfer varies according to oak wood’s intrinsic physical properties. This research aims to better understand oxygen transfer phenomena through dry oak staves and especially through stave gaps, in order to reevaluate the importance of barrel-making on a barrel’s supply of oxygen. Experimentation was based on the development of an innovative permeameter of laboratory scale, for which the principal operating conditions concerning applied pressure, the choice of liquid phase/gas phase, and the grain type of oak are taken into account and investigated. With a specially developed tightening system, the existing pressure at stave gaps in a barrel could be reproduced on a laboratory scale in order to estimate its influence on oxygen transfer efficiency.