Terroir 2014 banner
IVES 9 IVES Conference Series 9 From the “climats de Bourgogne” to the terroir in bottles

From the “climats de Bourgogne” to the terroir in bottles

Abstract

From a chemical composition point of view, wine is the result of complex interplays between environmental, genetic and human factors. The notion of terroir in viticulture involves the vine and its environment, including phenology, geography, geology, pedology and local climate of a vineyard, along with human inputs. On that basis, it could be assumed that, if grapes hold chemical fingerprints from a given terroir in their compositions, wines made of these grapes should also reflect related fingerprints. Very few strategies, based on the metabolodiversity of grape and/or wine, have tried to tackle the concept of Terroir in wine so far. Here, we report on the application of ultra-high resolution mass spectrometry, used as an untargeted approach, to the study of complex biochemical fingerprints of Pinot noir grapes and related wines from different plots (climats) in Burgundy, but grown/made by the same vinegrower/winemaker. Over three successive vintages, samples were mostly discriminated according to vintages. However within a given vintage, terroir-related signatures were more pronounced in grapes than in wines. In contrast, the single-run analysis of the same wines after bottle ageing clearly allowed for a significant separation between closely related vineyards from the Côte de Beaune and the Côte de Nuits, regardless of the vintages. For the first time, such results indicate that non-targeted experiments can reveal memories of environmental factors, which have impacted the wine’s metabolic baggage at the moment of its elaboration, through terroir-related metabolic signatures on a regional-scale that can potentially be as small as the countless “climats” of Burgundy. 

DOI:

Publication date: August 18, 2020

Issue: Terroir 2014

Type: Article

Authors

Chloé Roullier-Gall (1,2), Marianna Lucio (2), Laurence Noret (1), Philippe Schmitt-Koplin (2,3) and Régis D. Gougeon (1) 

(1) Institut Universitaire de la vigne et du vin, Jules Guyot, UMR A 02.102 PAM AgroSupDijon/Université de Bourgogne, Rue Claude Ladrey, BP 27877, 21078 Dijon Cedex, France. 
(2) Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85758 Neuherberg, Germany 
(3) Technische Universität München, Chair of Analytical Food Chemistry, Alte Akademie 1085354 Freising-Weihenstephan, Germany. 

Contact the author

Keywords

Pinot noir grapes, wine, terroir, FTICR-MS, vintage, “Climats de Bourgogne” 

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Vertical cordon training system enhances yield and delays ripening in cv. Maturana Blanca

The growing interest in minority grape varieties is due to their potential for adaptation to global warming and their oenological capabilities. However, the cultivation of these varieties has often been limited due to their low economic efficiency. One such example is Maturana Blanca, a recently recovered and authorized minority grape variety in the DOCa Rioja region, known for its remarkable oenological potential but low productivity. This study aimed to increase the yield of Maturana Blanca by implementing the vertical cordon training system, which allowed for a higher number of buds per plant and an increased cluster count per vine.

Delaying irrigation initiation linearly reduces yield with little impact on maturity in Pinot noir

When to initiate irrigation is a critical annual management decision that has cascading effects on grapevine productivity and wine quality in the context of climate change. A multi-site trial was begun in 2021 to optimize irrigation initiation timing using midday stem water potential (ψstem) thresholds characterized as departures from non-stressed baseline ψstemvalues (Δψstem). Plant material, vine and row spacing, and trellising systems were concomitant among sites, while vine age, soil type, and pruning systems varied. Five target Δψstem thresholds were arranged in an RCBD and replicated eight times at each site: 0.2, 0.4, 0.6, 0.8, and 1.0 MPa (T1, T2, T3, T4, and T5, respectively). When thresholds were reached, plots were irrigated weekly at 70% ETc. Yield components and berry composition were quantified at harvest. To better generalize inferences across sites, data were analyzed by ANOVA using a mixed model including site as a random factor. Across sites, irrigation was initiated at Δψstem = 0.24, 0.50, 0.65, 0.93, and 0.98 MPa for T1, T2, T3, T4, and T5, respectively. Consistent significant negative linear trends were found for several key yield and berry composition variables. Yield decreased by 12.9, 15.9, 19.5, and 27.4% for T2, T3, T4, and T5, respectively, compared to T1 (p < 0.0001) across sites that were driven by similarly linear reductions in berry weight (p < 0.0001). Comparatively, berry composition varied little among treatments. Juice total soluble solids decreased linearly from T1 to T5 – though only ranged 0.9 Brix (p = 0.012). Because producers are paid by the ton, and contracts simply stipulate a target maturity level, first-year results suggest that there is no economic incentive to induce moderate water deficits before irrigation initiation, regardless of vineyard site. Subsequent years will further elucidate the carryover effects of delaying irrigation initiation on productivity over the long term.

Linear sweep voltammetry to classify and characterize the antioxidant properties of tannins

In recent years, numerous studies have been carried out at the OIV on oenological tannins, both with regard to oenological properties and methods of characterization. The results of these recent studies have led to the revision of the general monograph and the drafting of four new monographs, one for each of the four chemical classes into which the tannins have been grouped: ellagitannins, gallotannins, procyanidins/prodelphinidins, profisetinidins/prorobinetinins.

Use of antisense RNA technology to modulate gene expression in Œnococcus oeni

Œnococcus oeni is a wine-associated lactic acid bacterium performs the malolactic fermentation, which improves the taste and aromatic complexity of many wine.

Algae protein: fining agent for white wine, sustainable, non-allergenic and animal-free

The development of non-animal and non-allergenic alternatives to traditional protein fining agents used in winemaking is of critical importance in order to ensure consumer safety and production sustainability. This study evaluates the effect of protein extracted from three types of algae (spirulina, chlorella vulgaris and tetraselmis chuii) as fining agents on the polymeric proanthocyanidin content responsible for astringency, as well as their effect on the colour, phenolic composition and volatile aroma of two white wines (a and b).