Terroir 2014 banner
IVES 9 IVES Conference Series 9 From the “climats de Bourgogne” to the terroir in bottles

From the “climats de Bourgogne” to the terroir in bottles

Abstract

From a chemical composition point of view, wine is the result of complex interplays between environmental, genetic and human factors. The notion of terroir in viticulture involves the vine and its environment, including phenology, geography, geology, pedology and local climate of a vineyard, along with human inputs. On that basis, it could be assumed that, if grapes hold chemical fingerprints from a given terroir in their compositions, wines made of these grapes should also reflect related fingerprints. Very few strategies, based on the metabolodiversity of grape and/or wine, have tried to tackle the concept of Terroir in wine so far. Here, we report on the application of ultra-high resolution mass spectrometry, used as an untargeted approach, to the study of complex biochemical fingerprints of Pinot noir grapes and related wines from different plots (climats) in Burgundy, but grown/made by the same vinegrower/winemaker. Over three successive vintages, samples were mostly discriminated according to vintages. However within a given vintage, terroir-related signatures were more pronounced in grapes than in wines. In contrast, the single-run analysis of the same wines after bottle ageing clearly allowed for a significant separation between closely related vineyards from the Côte de Beaune and the Côte de Nuits, regardless of the vintages. For the first time, such results indicate that non-targeted experiments can reveal memories of environmental factors, which have impacted the wine’s metabolic baggage at the moment of its elaboration, through terroir-related metabolic signatures on a regional-scale that can potentially be as small as the countless “climats” of Burgundy. 

DOI:

Publication date: August 18, 2020

Issue: Terroir 2014

Type: Article

Authors

Chloé Roullier-Gall (1,2), Marianna Lucio (2), Laurence Noret (1), Philippe Schmitt-Koplin (2,3) and Régis D. Gougeon (1) 

(1) Institut Universitaire de la vigne et du vin, Jules Guyot, UMR A 02.102 PAM AgroSupDijon/Université de Bourgogne, Rue Claude Ladrey, BP 27877, 21078 Dijon Cedex, France. 
(2) Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85758 Neuherberg, Germany 
(3) Technische Universität München, Chair of Analytical Food Chemistry, Alte Akademie 1085354 Freising-Weihenstephan, Germany. 

Contact the author

Keywords

Pinot noir grapes, wine, terroir, FTICR-MS, vintage, “Climats de Bourgogne” 

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Analyse du rôle du terroir dans la définition d’une appellation d’origine

In France, the definition of appellations of origins is entrusted to the Institut National des Appellations d’Origine. (‘NAO). With the increase in price of appellations of origin vine­yards and considering the interests at stake, Institut National des Appellations d’Origine and the Institut National de Recherche Agronomique (INRA) established a work group in 1993 in order to study the “terroir-wine” relationship as precisely as possible, taking into account the knowledge acquired by researchers of the INRA and the experience in the field of the agents of the INAO.

Viticultural zoning of central chile based on bioclimatic indexes and the impact of climate warming

Climate is considered one of the main factors that determines the aptitude of a specific location for growing grapes and producing high quality wine, being in that sense one of the main elements defining the concept of terroir

Effect of different plant fibers on the elimination of undesirable compounds in red wine 

The presence of undesirable compounds in wines, such as ota, biogenic amines and pesticides residues, affects wine quality and can cause health problems for the consumer. Additionally, an excess of tannins can produce an undesirable increase in the astringency and bitterness of the wine, so tannins are also a target for reduction. The main tool that a winemaker has to reduce their content in the wine is fining. However, some of the fining agents commonly used in the winery can cause allergies or even increase the protein content in the wine, increasing the turbidity.

Time vs drought: leaf age rather than drought drives osmotic adjustment in V. vinifera cv. Pinot Noir

Global warming and increased frequency and/or severity of drought events are among the most threatening consequences of climate change for agricultural crops. In response to drought, grapevine (as many other plants) exhibits osmotic adjustment through active accumulation of osmolytes which in turn shift the leaf turgor loss point (TLP) to more negative values, allowing to maintain stomata opened at lower water potentials1. We investigated the capacity of Pinot noir leaves to modulate their osmotic potential as a function of: (i) time (seasonal osmoregulation), (ii) growing temperatures, and (iii) drought events, to enhance comprehension of the resilience of grapevines in drought conditions. We performed trails under semi-controlled field conditions, and in two different greenhouse chambers (20/15 °C vs 25/20 °C day/night). For two consecutive vegetative seasons, grafted potted grapevines (Pinot noir/SO4) were subjected to two different water regimes for at least 30 days: well-watered (WW) and water deficit (WD).

ANTHOCYANINS EXTRACTION FROM GRAPE POMACE USING EUTECTIC SOLVENTS

Grape pomace is one of the main by-products generated after pressing in winemaking.Emerging methods, such as ultrasound-assisted extraction with eutectic mixtures, have great potential due to their low toxicity, and high biodegradability. Choline chloride (ChCl) was used as a hydrogen bond acceptor and its corresponding hydrogen bond donor (malic acid, citric acid, and glycerol: urea). Components were heated at 80 °C and stirred until a clear liquid was obtained. Distilled water was added (30 % v/v). A solid-liquid ratio of 1 g pomace per 10 ml of eutectic solvent was used.