terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Analysis and composition of grapes, wines, wine spirits 9 Development of a new lab-scale carbonation method for applications to sparkling wines

Development of a new lab-scale carbonation method for applications to sparkling wines

Abstract

Carbon dioxide (CO2) is the gaseous species responsible for the sparkle in all sparkling wines, influencing their visual appearance, aromas and mouthfeel1. Behind the industrial-scale production of sparkling wines (and sparkling drinks in general) lies a simple law, known as Henry’s equilibrium, which states that the concentration 𝐶L of dissolved CO2 in the liquid phase is proportional to the pressure of gas-phase CO2 in a sealed container according to 𝐶L = 𝑘H𝑃CO2 (with 𝑘H being the Henry’s constant of CO2 in the liquid phase, and 𝑃CO2 being the partial pressure of gas-phase CO2 in the sealed container)2. However, precise knowledge of the Henry’s constant of CO2 in complex water/ethanol mixtures such as sparkling wines remains challenging due to the high variability of the multitude of compounds present (such as ethanol, sugars and myriads of small or macromolecules3,4).

In the present work, an accurate and reproducible carbonation method for measuring the solubility and dissolution kinetics of CO2 in model wines was developed. A lab-scale carbonator has been designed to inject gaseous CO2 in a controlled manner up to concentrations of around 10-12 g/L in standard 75 cL “Champenoise” bottles sealed with crown caps. Various tests were performed with variations in the temperature (at 1, 12 and 19°C), ethanol concentration (at 0, 12 and 40% vol.), and pH (3 and 7) of the model wine solutions. Moreover, increasing addition of yeast cell wall products were also performed (with 10, 20 and 100 cL hL-1, respectively). Preliminary results show that the solubility of CO2 increases at low temperatures and with moderate ethanol concentrations, while the presence of yeast cell wall products does not significantly impact its solubility, but improved mass transfer up to a threshold where viscosity becomes limiting. This brand-new carbonation method makes it possible to study the effects of the compounds of interest on the quality of sparkling wines (and sparkling drinks in a broader sense), in relation to their foam and effervescence for example. Future perspectives include an in-depth analysis of the impact of various compounds on olfactory and organoleptic properties, indeed crucial to the consumer experience. In short, this method is a powerful tool for analysing production parameters and optimizing the sensory qualities of sparkling beverages. Ultimately, this approach could be extended to other complex carbonated matrices, thus contributing to the development of new formulations of sparkling drinks.

References

[1] Liger-Belair G, Cilindre C. Recent progress in the analytical chemistry of champagne and sparkling wines. Annual Rev Anal Chem. 2021;14(1):21-46. doi:10.1146/annurev-anchem-061318-115018

[2] Liger-Belair G. Carbon dioxide solubility in sugar and water-ethanol solutions for applications to sparkling drinks. ACS Food Science & Technology, 5, 36-49, 2025

[3] Kemp B, Condé B, Jégou S, Howell K, Vasserot Y, Marchal R. Chemical compounds and mechanisms involved in the formation and stabilization of foam in sparkling wines. Critical Reviews in Food Science and Nutrition. 2019;59(13):2072-2094. doi:10.1080/10408398.2018.1437535

[4] Apolinar-Valiente R, Salmon T, Williams P, et al. Improvement of the foamability of sparkling base wines by the addition of acacia gums. Food Chemistry. 2020;313(126062):1-9. doi:10.1016/j.foodchem.2019.126062

Publication date: June 5, 2025

Type: Poster

Authors

Zoé Grolier1,2,3,*, Raphaël Vallon1, Florian Lecasse1, Clément Jacquemin1, Frédéric Polak1, Clara Cilindre1, Arnaud Massot2, Virginie Moine2, Stéphanie Marchand-Marion3, Gérard Liger-Belair1

1 Université de Reims Champagne-Ardenne, Equipe Effervescence & Champagne (GSMA), UMR CNRS 7331, Reims Cedex 251687, France
2 Biolaffort, 11 Rue Aristide Berges, 33270 Floirac, France
3 Université de Bordeaux, Bordeaux INP, Bordeaux Sciences Agro, INRAE, UMR OENO 1366, ISVV, 33140 Villenave-d’Ornon, France

Contact the author*

Keywords

carbonation, CO2 solubility, dissolution, sparkling wines

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Exploring the presence of oligopeptides in wines into identify possible compounds with umami or kokumi properties

Umami is defined as a pleasant and savory taste derived from glutamate, inosinate and guanylate, which are naturally present in meat, fish, vegetables and dairy products. The term “kokumi” refers to a complex flavour sensation, characterized by thickness, fullness and continuity.

Investigating perceptual interactions of fruity aromas in Bordeaux red wines through addition and reconstitution sensory studies

Fruity aromas, characterized by red and black fruit descriptors, are central to the identity of Bordeaux red wines [1,2]. Despite extensive research focused on identifying and quantifying volatile compounds that contribute to fruity aromas in wine, the mechanisms underlying their interactions and sensory perception remain poorly understood [3].

The Albariño route in Uruguay: A clonal selection process to produce quality wines

In recent years, Uruguay has embraced the Albariño grape variety (Vitis vinifera L.) as one of the most promising for commercial growth. Originally cultivated in Galicia and northern Portugal, Albariño has risen to prominence in the global wine market, driving strong demand and significantly increasing grape prices [1].

Comparison of the aroma profile in total and partial dealcoholisation of white and red wines by reverse osmosis

The increasing demand for low-alcohol and non-alcoholic wines has led to the development of advanced dealcoholisation techniques aimed at preserving wine quality while reducing ethanol content. Reverse osmosis is one of the most widely used membrane-based processes for the selective removal of ethanol [1].

Impact of GoLo technology on the aroma profile of red and white wines after total and partial dealcoholisation

Wine dealcoholisation has been practised since the early 1900s and has gained importance due to climate change
and shifting consumer preferences for lower-alcohol beverages. Rising temperatures are accelerating grape
ripening, increasing sugar content and, consequently, raising the alcohol strength of wines.