terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Chemical and biochemical reactions, including grape and wine microorganism’s impact 9 Antioxidant activity of yeast peptides released during fermentation and autolysis in model conditions

Antioxidant activity of yeast peptides released during fermentation and autolysis in model conditions

Abstract

Aging wine on lees benefits different wine sensory and technological properties including an enhanced resistance to oxidation. Several molecules released by yeast, such as membrane sterols and glutathione, have been previously proposed as key factors for this activity [1]. However, recent research testing various yeast extracts from wine lees reported that the improved oxidative stability did not appear to be related to membrane lipids nor directly correlated with glutathione concentration [2,3]. Conversely, chemical and electrochemical tests indicated the extract’s low molecular weight fraction, containing yeast-derived peptides beyond glutathione, as the primary in slowing catechin oxidation in model wine [2]. A subsequent study investigated the peptides’ release under model conditions during synthetic must fermentation and up to six months of lees contact, revealing the release of a significant peptide fraction (~1 g/L) composed of over 2300 sequences identified via LC-MS/MS, whose antioxidant activity was not tested [4].

Building on this approach, the present study examined peptides released after 7 and 240 days from inoculum. After ultrafiltration (MWCO 3 kDa) and purification using C18 cartridges, peptides were quantified with Pierce Quantitative Peptide Assays and their antioxidant activity was assessed with DPPH assay and by measuring their effect in reducing the browning due to the oxidation of catechin in model wine.

Results showed an increase in peptide concentration from 0.19 g/L at 7 days to 0.44 g/L at 240 days. Despite the lower concentration, the 7-day peptide fraction exhibited slightly higher antioxidant activity than the 240-day one (0.32 vs. 0.21 mM Trolox equivalents, respectively). When both peptide fractions were added at the same concentration (0.3 g/L) to a model wine enriched with catechin and exposed to oxygen at 13°C for 50 days, browning development (measured as A450nm) was 10 times lower than that of the untreated control. These results suggest that yeast-derived peptides capable of protecting catechin from oxidation were already present in the system at the end of fermentation.

These findings highlight the role of yeast-derived peptides in protecting wine from oxidation, explaining the reasons behind the application of lees aging and the addition of inactivated yeast extracts for this purpose. Future research will focus on identifying the peptides with antioxidant activities, and also those with antimicrobial properties, providing a wider understanding of the role of yeast peptides in the wine matrix.

References

[1] Salmon, J.M. (2006). LWT – Food Sci. Technol., 39, 959–965

[2] De Iseppi, A.; Curioni, A.; Marangon, M.; Invincibile, D.; Slaghenaufi, D.; Ugliano, M. (2023). J. Agric. Food Chem., 72, 4, 1969–1977.

[3] Bahut, F.; Romanet, R.; Sieczkowski, N.; Schmitt-Kopplin, P.; Nikolantonaki, M.; Gougeon, R.D. (2020) Food Chem., 325, 126941–126941.

[4] De Iseppi, A.; Rocca, G.; Marangon, M.; Corich, V.; Arrigoni, G.; Porcellato, D.; Curioni, A. (2024). J. Agric. Food Chem., 72, 24749–24761.

Publication date: June 4, 2025

Type: Poster

Authors

Alberto De Iseppi1,2,*, Matteo Marangon1,2, Sara Zanella1 and Andrea Curioni1,2

1 Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy
2 Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Viale XXVIII Aprile 14, 31015 Conegliano, Italy

Contact the author*

Keywords

wine oxidation, yeast peptides, antioxidant activity, autolysis

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Unveiling the secrets of catechin: insights from NMR spectroscopy

Catechins, a class of flavonoids found in foods and beverages such as wine and tea, exhibit potent antioxidant properties that contribute to various health benefits.[1]

Dimethyl sulfide transfer through wine closures during bottle aging: implications for wine aroma management

Dimethyl sulfide (DMS) is a volatile sulfur compound with a complex role in wine aroma, contributing both desirable and undesirable sensory characteristics depending on its concentration (1).

Circular economy strategies to reintegrate grape pomace from cv. Lagrein into the food chain

The project REALISM (regionality and circular economy in food products to counteract the Metabolic Syndrome (M.S.)) was initiated to develop antioxidant-rich food products with the ability to reduce the risk of developing the M.S.

Convergence and divergence in chemical and sensory profiles of disease-resistant and Vitis vinifera white wines from South Tyrol: addressing strategies for market adoption

This study investigates the chemical and sensory profiles of white wines produced from disease-resistant hybrid grape cultivars (DRHGCs) compared to traditional Vitis vinifera L. cultivars in South Tyrol, Italy.

Oenological performances of new white grape varieties

The wine industry works to minimize pesticides and adapt to climate change. Breeding programs have developed disease-resistant grape varieties, particularly against downy and powdery mildew, to minimize pesticide applications [1]. However, their enological potential remains underexplored.