terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Chemical and biochemical reactions, including grape and wine microorganism’s impact 9 Antioxidant activity of yeast peptides released during fermentation and autolysis in model conditions

Antioxidant activity of yeast peptides released during fermentation and autolysis in model conditions

Abstract

Aging wine on lees benefits different wine sensory and technological properties including an enhanced resistance to oxidation. Several molecules released by yeast, such as membrane sterols and glutathione, have been previously proposed as key factors for this activity [1]. However, recent research testing various yeast extracts from wine lees reported that the improved oxidative stability did not appear to be related to membrane lipids nor directly correlated with glutathione concentration [2,3]. Conversely, chemical and electrochemical tests indicated the extract’s low molecular weight fraction, containing yeast-derived peptides beyond glutathione, as the primary in slowing catechin oxidation in model wine [2]. A subsequent study investigated the peptides’ release under model conditions during synthetic must fermentation and up to six months of lees contact, revealing the release of a significant peptide fraction (~1 g/L) composed of over 2300 sequences identified via LC-MS/MS, whose antioxidant activity was not tested [4].

Building on this approach, the present study examined peptides released after 7 and 240 days from inoculum. After ultrafiltration (MWCO 3 kDa) and purification using C18 cartridges, peptides were quantified with Pierce Quantitative Peptide Assays and their antioxidant activity was assessed with DPPH assay and by measuring their effect in reducing the browning due to the oxidation of catechin in model wine.

Results showed an increase in peptide concentration from 0.19 g/L at 7 days to 0.44 g/L at 240 days. Despite the lower concentration, the 7-day peptide fraction exhibited slightly higher antioxidant activity than the 240-day one (0.32 vs. 0.21 mM Trolox equivalents, respectively). When both peptide fractions were added at the same concentration (0.3 g/L) to a model wine enriched with catechin and exposed to oxygen at 13°C for 50 days, browning development (measured as A450nm) was 10 times lower than that of the untreated control. These results suggest that yeast-derived peptides capable of protecting catechin from oxidation were already present in the system at the end of fermentation.

These findings highlight the role of yeast-derived peptides in protecting wine from oxidation, explaining the reasons behind the application of lees aging and the addition of inactivated yeast extracts for this purpose. Future research will focus on identifying the peptides with antioxidant activities, and also those with antimicrobial properties, providing a wider understanding of the role of yeast peptides in the wine matrix.

References

[1] Salmon, J.M. (2006). LWT – Food Sci. Technol., 39, 959–965

[2] De Iseppi, A.; Curioni, A.; Marangon, M.; Invincibile, D.; Slaghenaufi, D.; Ugliano, M. (2023). J. Agric. Food Chem., 72, 4, 1969–1977.

[3] Bahut, F.; Romanet, R.; Sieczkowski, N.; Schmitt-Kopplin, P.; Nikolantonaki, M.; Gougeon, R.D. (2020) Food Chem., 325, 126941–126941.

[4] De Iseppi, A.; Rocca, G.; Marangon, M.; Corich, V.; Arrigoni, G.; Porcellato, D.; Curioni, A. (2024). J. Agric. Food Chem., 72, 24749–24761.

Publication date: June 4, 2025

Type: Poster

Authors

Alberto De Iseppi1,2,*, Matteo Marangon1,2, Sara Zanella1 and Andrea Curioni1,2

1 Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy
2 Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Viale XXVIII Aprile 14, 31015 Conegliano, Italy

Contact the author*

Keywords

wine oxidation, yeast peptides, antioxidant activity, autolysis

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Chemical composition of press and free-run wines from three vintages and Bordeaux grape varieties. A comprehensive analysis

Press wines play a crucial role in red winemaking, representing up to 15% of the final blend [1]. Optimizing their value is essential both economically and for maintaining wine identity, especially given evolving climatic and societal challenges. However, little recent research exists on their composition.

On the impact of preformed α-dicarbonyls in the production of Strecker aldehydes. Exploring the addition of sacrificial amino acids as a tool to reduce Strecker aldehydes production

The reaction between Strecker amino acids and α-dicarbonyls is a key pathway in the formation of Strecker aldehydes (SA), which are crucial oxidation-related odorants in wine [1].

Free and bound terpene profile of recovered minority white grape varieties by GC × GC-TOFMS

Climate change presents a significant challenge for actual viticulture. In this context, recovering minority grape varieties can be a crucial strategy to ensure resilience, particularly those capable of maintaining quality and aromatic complexity under water stress.

Characterization of resistant varieties produced in the context of a search for regional typicality

Planted between 2018 and 2019, the ‘New Vine’ system is a vineplot, comprising 169 individuals genotypes (5 vines/individual), located on a gravelous soil, in the INRAE Grande-Ferrade site (Villenave d’Ornon, France).

Sensory analysis in oenology: the role of methodological differences in expert panel evaluations

Sensory analysis is an essential component of oenology, offering valuable insights into wine quality that influence decision-making in viticulture and winemaking.