terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Winemaking processes and oenological practices 9 Optimized grape seed protein extraction for wine fining

Optimized grape seed protein extraction for wine fining

Abstract

The extraction of proteins from grape seeds represents a promising strategy to revalorize wine industry by-products. As a natural endogenous fining agent, grape seed protein (GSE) offers an effective solution for wine clarification [1] without requiring label declaration. This study optimized the laboratory-scale GSE extraction protocol proposed by Vincenzi et al. (2013) [2] and evaluated its potential as a sustainable clarifying agent. Improvements to the protocol enhanced protein purity, partially meeting the OIV threshold of 65%, while ash content remained below 3%, within the OIV limit of 8%. Protein composition was assessed via SDS-PAGE and analyzed for total protein, total polyphenols, and polysaccharides. The potential to increase yield was explored by introducing a defatting step, which improved protein purity, though its impact on process sustainability requires further evaluation. Additionally, certain by-products during the extraction process (such as the white fraction from the initial centrifugation) were found rich in proteins and polysaccharides, suggesting potential for recovery and reuse. Reducing the water-to-solid ratio from 1:10 to 1:5 (w/v) did not significantly affect protein yield, indicating opportunities for water savings. GSE’s clarification performance was evaluated in different wine types (white, rosé, and sparkling), showing particularly strong results in white and sparkling wines. Compared to commercial fining agents (gelatin, casein, pea protein, and potato protein) GSE demonstrated comparable performance to gelatin in certain cases. Its effects on wine colour and total polyphenol retention were also assessed. In conclusion, this study highlights grape seed protein as a viable, plant-based alternative to conventional fining agents, offering efficient clarification and aligning with sustainable winemaking practices.

References

[1] Gazzola, D.; Vincenzi, S.; Marangon, M.; Pasini, G.; Curioni, A. Grape Seed Extract: The First Protein-Based Fining Agent Endogenous to Grapes. Aust J Grape Wine Res 2017, 23, 215–225, doi:10.1111/AJGW.12268.

[2] Vincenzi, S.; Dinnella, C.; Recchia, A.; Monteleone, E.; Gazzola, D.; Pasini, G.; Curioni, A. Grape Seed Proteins: A New Fining Agent for Astringency Reduction in Red Wine. Aust J Grape Wine Res 2013, 19, 153–160, doi:10.1111/AJGW.12030.

Publication date: June 4, 2025

Type: Poster

Authors

Shuyan Liu1, Simone Vincenzi1,*

1 Interdepartmental Centre for Research in Viticulture and Enology, University of Padova, Conegliano (TV) 31015, Italy

Contact the author*

Keywords

grape seed protein, fining agent, sustainability

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Metal reducing agents (Fe and Al) as possible agents to measure the dimensions of the hydrogen sulfide (H2S) pool of precursors in wines

Reductive wine fault is characterized by the presence of odors such as rotten eggs or spoiled camembert cheese, originating from hydrogen sulfide (H2S) and methanethiol (MeSH) [1]. These compounds stabilize in polysulfide forms, creating a complex pool of precursors that will revert to both molecules when the environment becomes anoxic [2].

Crafting wine’s signature: exploring volatile compounds from terroir to aging

The unique characteristics of terroir play a fundamental role in shaping the identity and quality of wines, influencing the aromatic complexity of young wines and their long-term aging potential. The volatile compounds responsible for these aromas are crucial to identifying and appreciating a given wine.

Effect of polysaccharide extracts from grape pomace on the oxidative evolution of hydroxycinnamic acids

Phenolic acids are especially sensitive to oxidation, so they can greatly impact wine sensory characteristics and stability [1]. Furthermore, extracts derived from grape pomace have been previously postulated as possible oenological adjuvants for wine protection [2].

Effect of maceration conditions during the winemaking of withered Corvina grapes on wine polyphenols and anthocyanins

Amarone is an Italian red wine with worldwide recognition and high added value. In Amarone wines, grapes undergo a withering process before vinification; this leads to a modification in the concentrations of sugars, acids, and secondary metabolites.

Cross analytical and sensory differentiation of monovarietal white wines from four autochthonous grape varieties: focus on macromolecules

White wines contain macromolecules such as proteins, phenolic compounds and polysaccharides. On a sensory
level, these compounds contribute to the ‘mouthfeel’ that differentiates the white wines worldwide [1].