terclim by ICS banner

Catechins, NMR, Huntington’s disease, protein aggregation modulation

Abstract

Catechins, a subclass of flavonoids widely found in plants and plant-based foods and beverages such as wine and tea, not only exhibit significant antioxidant properties [1], as extensively documented in the literature, but can also inhibit amyloid protein aggregation [2], a key process implicated in the onset of neurodegenerative diseases such as Parkinson’s, Alzheimer’s, and Huntington’s.

Observations of kinetics profiles suggested that amyloid fibrils formation could be modelled by a sigmoidal function, reflecting the fact that this process consists primarily of two stages: nucleation and elongation.

Detailed studies on this kind of polymerization have shown that the mass concentration of polymer in solution frequently increases more rapidly than predicted by the classical model, suggesting the extension including secondary nucleation pathways, which can contribute to the increase in the number of polymers in addition to that produced by the straightforward homogeneous nucleation [3]. More specifically, monomer-dependent secondary nucleation [4] and monomer-independent secondary nucleation in the form of fragmentation [5] emerged as a key factor in the propagation.

Our study aims to elucidate the mechanisms by which flavonoids, starting with (+)-catechin (2R,3S) —the most common catechin isomer— modulate the aggregation kinetics of Huntingtin protein exon 1 (the portion of the protein directly involved in the aggregation) encoding CAG/polyglutamine repeat expansion. To achieve this, we integrated NMR spectroscopy with computational analysis. Building on existing literature, we have developed a comprehensive mathematical framework that incorporates primary nucleation, elongation, and secondary nucleation stages of protein aggregation, incorporating additionally the presence of a generic binding molecule by considering all interaction pathways through which it may influence aggregation kinetics. By fitting this model to NMR experimental data, we seek to determine the specific stage within the aggregation cascade where catechin exerts its influence, thereby shedding light on its potential anti-amyloid mechanism of action.

References

[1] Pietta, Pier-G. (2000). Journal of Natural Products, 63(7), 1035-1042.

[2] Martinez Pomier, K., Ahmed, R., Melacini, G. (2020). Molecules, 25(16).

[3] Cohen, S.I., Vendruscolo, M., Welland, M.E., Dobson, C.M., Terentjev, E.M., Knowles, T.P. (2011). J Chem Phys,135(6):065105

[4] Cohen, S.I., Vendruscolo, M., Dobson, C.M., Knowles, T.P. (2011). J Chem Phys.135(6):065106

[5] Cohen, S.I., Vendruscolo, M., Dobson, C.M., Knowles, T.P. (2011). J Chem Phys.135(6):065107

Publication date: June 4, 2025

Type: Poster

Authors

Giacomo Zuccon1,2, Edoardo Longo1, Emanuele Boselli1,3, Alberto Ceccon2,*

1 Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy; Oenolab, NOI TechPark Alto Adige/Südtirol, Via A. Volta 13B, 39100 Bolzano, Italy.
2 Laimburg Research Centre, Laimburg 6 – Pfatten (Vadena), 39040 Auer (Ora), BZ, Italy.
3 International Competence Center for Food Fermentations, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy.

Contact the author*

Keywords

catechins, NMR, Huntington’s disease, protein aggregation modulation

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Peptidomics in the wine industry: literature perspectives on functional importance and analytical methods

Winemaking is a globally significant industry in the field of food technology (218 mhL of wine estimated for 2024 harvest) [1], which activity produces tons of by-products annually, including pomace (pulp, stems, seeds, skins), lees, organic acids, CO2, and water [2].

Convergence and divergence in chemical and sensory profiles of disease-resistant and Vitis vinifera white wines from South Tyrol: addressing strategies for market adoption

This study investigates the chemical and sensory profiles of white wines produced from disease-resistant hybrid grape cultivars (DRHGCs) compared to traditional Vitis vinifera L. cultivars in South Tyrol, Italy.

Effects of Non-Grape Materials (MOG) on wine quercetin composition: insights from synthetic and Merlot grape juice fermentation

Quercetin precipitation has become an increasingly common issue in red wine, often resulting in visually unpleasant sediments and diminished product quality.

Oenological potential of cv. Tortojona: A minority grape variety from Extremadura, southwest Spain

This work, included in the VAVEGEX project, aims to evaluate the oenological, phenolic, chromatic and sensory characteristics of the grapes, must and wines produced from cv. Tortojona, minority variety grown in Extremadura region (Southwest, Spain).

HPLC-based quantification of elemental sulfur in grape juice

Elemental sulfur is commonly used in vineyards as a fungicide to prevent diseases and protect grapevines.1 The challenges of climate change are intensifying disease pressure, further increasing the reliance on sulfur use. Understanding the range of potential impacts of residual sulfur during the winemaking process is becoming increasingly important.