terclim by ICS banner

Catechins, NMR, Huntington’s disease, protein aggregation modulation

Abstract

Catechins, a subclass of flavonoids widely found in plants and plant-based foods and beverages such as wine and tea, not only exhibit significant antioxidant properties [1], as extensively documented in the literature, but can also inhibit amyloid protein aggregation [2], a key process implicated in the onset of neurodegenerative diseases such as Parkinson’s, Alzheimer’s, and Huntington’s.

Observations of kinetics profiles suggested that amyloid fibrils formation could be modelled by a sigmoidal function, reflecting the fact that this process consists primarily of two stages: nucleation and elongation.

Detailed studies on this kind of polymerization have shown that the mass concentration of polymer in solution frequently increases more rapidly than predicted by the classical model, suggesting the extension including secondary nucleation pathways, which can contribute to the increase in the number of polymers in addition to that produced by the straightforward homogeneous nucleation [3]. More specifically, monomer-dependent secondary nucleation [4] and monomer-independent secondary nucleation in the form of fragmentation [5] emerged as a key factor in the propagation.

Our study aims to elucidate the mechanisms by which flavonoids, starting with (+)-catechin (2R,3S) —the most common catechin isomer— modulate the aggregation kinetics of Huntingtin protein exon 1 (the portion of the protein directly involved in the aggregation) encoding CAG/polyglutamine repeat expansion. To achieve this, we integrated NMR spectroscopy with computational analysis. Building on existing literature, we have developed a comprehensive mathematical framework that incorporates primary nucleation, elongation, and secondary nucleation stages of protein aggregation, incorporating additionally the presence of a generic binding molecule by considering all interaction pathways through which it may influence aggregation kinetics. By fitting this model to NMR experimental data, we seek to determine the specific stage within the aggregation cascade where catechin exerts its influence, thereby shedding light on its potential anti-amyloid mechanism of action.

References

[1] Pietta, Pier-G. (2000). Journal of Natural Products, 63(7), 1035-1042.

[2] Martinez Pomier, K., Ahmed, R., Melacini, G. (2020). Molecules, 25(16).

[3] Cohen, S.I., Vendruscolo, M., Welland, M.E., Dobson, C.M., Terentjev, E.M., Knowles, T.P. (2011). J Chem Phys,135(6):065105

[4] Cohen, S.I., Vendruscolo, M., Dobson, C.M., Knowles, T.P. (2011). J Chem Phys.135(6):065106

[5] Cohen, S.I., Vendruscolo, M., Dobson, C.M., Knowles, T.P. (2011). J Chem Phys.135(6):065107

Publication date: June 4, 2025

Type: Poster

Authors

Giacomo Zuccon1,2, Edoardo Longo1, Emanuele Boselli1,3, Alberto Ceccon2,*

1 Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy; Oenolab, NOI TechPark Alto Adige/Südtirol, Via A. Volta 13B, 39100 Bolzano, Italy.
2 Laimburg Research Centre, Laimburg 6 – Pfatten (Vadena), 39040 Auer (Ora), BZ, Italy.
3 International Competence Center for Food Fermentations, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy.

Contact the author*

Keywords

catechins, NMR, Huntington’s disease, protein aggregation modulation

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Unveiling Metschnikowia spp.: mechanisms and impacts of bioprotection in winemaking

Bioprotection, leveraging beneficial microorganisms, has emerged as a sustainable approach to modern winemaking, minimizing reliance on chemical preservatives like as sulfur dioxide (SO₂).

Effect of ozone treatments in wine production on colour traits, volatile composition, and sensory characteristics of young and short-term aged white wines

The main aim of WiSSaTech project (PRIN P2022LXY3A),supported by the Italian Ministero dell’Università e della Ricerca and European Union-NextGenerationEU, is to investigate eco-friendly and safe alternatives to sulphur dioxide (SO2) in wine production.

Aroma compounds and physical-chemical characterization of grapes and wines from Mount Etna “relic-jewels” vine genotypes

In the last few decades, minor vine genotypes traditionally cultivated on the Mount Etna slopes, have attracted the interest of both researchers and vine growers, as they offer an interesting oenological profile.

Exploring the behavior of alternatives to montmorillonite clays in white wine protein stabilization

Visual clarity in wines is crucial for commercial purposes [1]. Potential protein haze in white wines remains a constant concern in wineries, commonly addressed using bentonite [2].

Evolution of grapeseed composition during maturation and characterization of its impact on wine compound using molecular networks

Usually the winemaker consider the grapeberry maturity as an actor of the wine quality. Grape seed are frequently used as a marker to assess the grape maturity. The first aim of this study is to obtain a better understanding of the impact of grape seed maturity on the grape seed and grape berry composition.