terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Artificial Intelligence in the vine and wine sector 9 Predicting oxygen consumption rate by tannins through sweep linear voltammetry and machine learning models

Predicting oxygen consumption rate by tannins through sweep linear voltammetry and machine learning models

Abstract

Nowadays, it is well known that oxygen significantly impacts wine quality. The amount of oxygen wine consumes during the winemaking process depends on several factors, such as storage conditions, the number of rackings, the materials used for aging, and the type of closure chosen for bottling. The primary substrate for oxidation is polyphenols, whose oxidation leads to the formation of quinones. These quinones, in turn, can react with numerous compounds in wine, causing changes of varying depth depending on its chemical composition (Ugliano, 2013). For this reason, tools capable of assessing the oxidative potential of wine are essential for improved winemaking management.

To address this, linear voltammetry was employed to determine the potential oxygen consumption of wine in which tannins were added. The experiment provided 43 enological tannins from three different botanical sources: oak, grapeseed, and gallnut. 500 mg/L of each tannin was added to a Corvina red wine without sulfur dioxide and with 25 mg/L of free sulfur dioxide, respectively, for a total of 86 samples. After tannins addition, the sample was saturated by handshaking up to 7,5 mg/L of oxygen. Samples were kept in an oven at 25 °C. Oxygen consumption was monitored every 24 hours, and the experiment was concluded when the samples contained less than 1 mg/L of oxygen.

The oxygen consumption data were subjected to clustering analysis, which divided the samples into two groups based on their hourly oxygen consumption rates, which have been called “Fast” and “Slow”. A Kruskal-Wallis test was performed to verify that the oxygen consumption rate between the two groups was statistically different. The voltammograms of the samples were used to train machine learning models to predict whether a sample would consume oxygen at a fast or slow rate based on these initial measurements. Voltammetry is a quick, simple, and cost-effective analytical technique. However, its primary drawback lies in the interpretability of voltammograms. In studies like Ugliano et al., 2020, a convolutional analytical approach was applied to accentuate differences in voltammograms that might hold crucial interpretive information.

A single dataset was created, combining the linear voltammetry data with their first and second derivatives of themselves. A Random Forest was employed to avoid feature redundancy during training, followed by Recursive Feature Elimination (RFE) for precise feature selection. The resulting dataset was used to train a Support Vector Machine (SVM).

The SVM model achieved an overall accuracy of 94% on the test set, with mean precision and recall of 96% and 92%, respectively. The AUC-ROC score was 1.00, indicating perfect discrimination between the “Fast” and “Low” oxygen consumption classes. These results demonstrate the effectiveness of the feature selection and hyperparameter optimization approach in this context. The study highlights the potential of voltammetry, combined with advanced machine learning techniques, to provide valuable insights into the oxidative potential of wine.

References

Ugliano, M. (2013). Oxygen contribution to wine aroma evolution during bottle aging. Journal of agricultural and food chemistry, 61(26), 6125-6136.

Picariello, L., Slaghenaufi, D., & Ugliano, M. (2020). Fermentative and post‐fermentative oxygenation of Corvina red wine: influence on phenolic and volatile composition, colour and wine oxidative response. Journal of the Science of Food and Agriculture, 100(6), 2522-2533.

Publication date: June 4, 2025

Type: Poster

Authors

Rosario Pascale1,*, Davide Slaughenaufi1, Maurizio Ugliano1

1 Department of Biotechnology, University of Verona, Italy

Contact the author*

Keywords

linear voltammetry, enological tannins, oxygen consumption

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Exploiting the diversity in spent yeast for its valorisation towards producing yeast-derived processing aids

In view of sustainability and zero-waste initiatives, the valorisation of sidestreams is a key emerging topic in the wine industry.

Exploring aromatic profiles and environmental influences on berry chemistry of V. vinifera Riesling and Vitis sp. L’Acadie blanc in Quebec and Nova Scotia, Canada

Wine quality depends on grape biochemical constituents, including sugars, organic acids, amino acids, and bound and free aroma compounds, which are influenced by vineyard location and environmental factors such as temperature and precipitation [1].

Circular economy strategies to reintegrate grape pomace from cv. Lagrein into the food chain

The project REALISM (regionality and circular economy in food products to counteract the Metabolic Syndrome (M.S.)) was initiated to develop antioxidant-rich food products with the ability to reduce the risk of developing the M.S.

Biosynthetic evolution of galloilated polyphenols in Tannat grapes during ripening, potential applications of grape thinning

Galloylated flavan-3-ols are a class of polyphenolic compounds present in various plants, including grape seeds. These compounds are formed through the condensation of flavan-3-ols, such as catechins, although the precise mechanism by which gallic acid is incorporated into the molecule remains unclear.

Quality assessment of partially dealcoholized and dealcoholized red, rosé, and white wines: physicochemical, color, volatile, and sensory insights

The global non-alcoholic wine market is projected to grow from USD 2.7 billion in 2024 to USD 6.97 billion by 2034, driven by health awareness, lifestyle shifts, and religious factors [1-3]. Consequently, the removal of alcohol can significantly alter the key quality parameters of wine.