Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Grapegrowing climates 9 ECA&D: A high-resolution dataset for monitoring climate change and effects on viticulture in Europe

ECA&D: A high-resolution dataset for monitoring climate change and effects on viticulture in Europe

Abstract

Climate change will lead to persistent changes in temperature and precipitation patterns which will affect the characteristics of wine produced in each region. The European Climate Assessment and Dataset (ECA&D) is a web-based database and tool to monitor climate variability and trends over Europe. This tool is used in this study to analyse the viticulture-specific Huglin Index and averaged temperature over the growing season.

The study quantifies the timing and the extent of the expansion of the regions in Europe
where two selected grapes can be used for viticulture. For the two grape varieties analysed, the expansion is northward and eastward and areas in southern Europe are indicated where climate is becoming too hot to produce high-quality wines.

DOI:

Publication date: August 28, 2020

Issue: Terroir 2012

Type: Article

Authors

Gerard VAN DER SCHRIER (1) , Gerhard HORSTINK (2), Else J.M. VAN DEN BESSELAAR (1), Albert M. G. KLEIN TANK (1)

(1) Royal Netherlands Meteorological Institute (KNMI) De Bilt, the Netherlands
(2) OINOS Wijncursussen, Nijverheidsstraat 28, Hoogerheide, the Netherlands

Contact the author

Keywords

Europe, climate change, Huglin Index, growing season averaged temperature.

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Leaf removal to regulate fruit ripening in Cabernet-Sauvignon

Aim: Under the effects of climate change it is becoming increasingly common to observe excessively fast sugar accumulation while anthocyanin and flavour development are lagging behind. Understanding the impact of different leaf removal techniques on ripening will provide vineyard managers with a canopy management strategy suitable for

Effect of different plant fibers on the elimination of undesirable compounds in red wine. Correlation with its polysaccharide composition

The presence of undesirable compounds in wines, such as OTA, biogenic amines and pesticides residues, affects wine quality and can cause health problems for the consumer. The main tool that a winemaker has to reduce their content in the wine is fining. However, some of the fining agents commonly used in the winery can cause allergies or even increase the protein content in the wine, increasing the turbidity. To avoid these problems, the use of plant fibers may be an alternative, such as those from grape pomace[1] or other plant origins.

IMPACT ON CHITOSAN APPLICATION OF DIFFERENT MICROORGANISMS HAVING OENOLOGICAL INTEREST

Chitosan is an effective antimicrobial agent available in the wine industry, because it ensures the control of a of spoilage microorganisms, such as Brettanomyces of lactic acid bacteria.

Withering of the ‘Moscato giallo’ grapes under covered space

For the purpose of producing predicate wines in northern part of Croatia, grapes are traditionally left on the vine unpicked. However, grapes on the vine are exposed to unfavorable environmental conditions that affect rapid rotting and attacked by birds. To eliminate the mentioned risks, the grapes can be picked and placed in a protected space (loft, greenhouse, etc.) suitable for drying. This study presents the results of research on withering grapes of the ‘Moscato giallo’ variety in two tretment: sun drying (under covered terrace) and drying in the shade (loft). The following quality parameters were monitored: mass of grapes, sugar concentration, content of total acids, pH, content of organic acids.

Biosynthetic evolution of galloilated polyphenols in Tannat grapes during ripening, potential applications of grape thinning

Galloylated flavan-3-ols are a class of polyphenolic compounds present in various plants, including grape seeds. These compounds are formed through the condensation of flavan-3-ols, such as catechins, although the precise mechanism by which gallic acid is incorporated into the molecule remains unclear.