Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Grapegrowing climates 9 Observation and modeling of climate at fine scales in wine-producing areas

Observation and modeling of climate at fine scales in wine-producing areas

Abstract

Global change in climate affect regional climates and hold implications for viticulture worldwide. Despite numerous studies on the impact of projected global warming on different regions, global atmospheric models are not adapted to local scales and impacts at fine scales are still approximate. Although real progress in downscaling, using meso-scale atmospheric models taking surface characteristics into account, was realized over the past years, no operative model is in use yet to simulate climate at local scales (hundreds of meters). The TERVICLIM and TERACLIM programs aim at observing climate at local scales in different wine producing regions worldwide; simulating both climate and climate change in order to produce a fine scale assessment of the climate change impacts, thereafter simulating scenario of adaptation for viticulture, providing guidance to decision-makers in the viticultural sector.

DOI:

Publication date: August 28, 2020

Issue: Terroir 2012

Type: Article

Authors

Hervé QUÉNOL

Laboratoire LETG-Rennes-COSTEL, UMR6554 du CNRS, Université Haute Bretagne, place du recteur Henri le Moal 35043 Rennes Cedex.

Contact the author

Keywords

Climate change, small scales, spatial variability, terroir

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Mouthfeel effects due to oligosaccharides within a wine matrix

The mouthfeel of wine is one of the most important aspects of the organoleptic experience of tasting wine. In wine a great deal is known about certain compositional components and how they impact mouthfeel perception, such as phenolics. But there are other components where little is understood, such as oligosaccharides. Saccharides in general are found in very low concentrations with wine, especially compared to conventional foods. There is very little information about how oligosaccharides influence the mouthfeel perception of wine.

Effect of post-harvest ozone treatment on secondary metabolites biosynthesis and accumulation in grapes and wine

The actual demand by consumers for safer and healthier food and beverage is pushing the wine sector to find alternative methods to avoid the use of sulphur dioxide in winemaking. Ozone is already used in the wine industry to produce sulphur dioxide-free wines through the patented method Purovino®.

The impact of ethyl esters, monoterpenes and volatile thiols to the perception of tropical fruit aromas in white wines

Many varietal white wines have aroma qualities that incorporate various tropical fruit aromas. These tropical fruit aromas are found to be considered positive qualities of the wines with consumers having positive emotional responses [1].

Adaptation to climate change by determining grapevine cultivar differences using temperature-based phenology models

Grapevine phenology is advancing with increased temperatures associated with climate change. This may result in higher fruit sugar concentrations at harvest and/or earlier compressed harvests and changes in the synchrony of sugar with other fruit metabolites. One adaptation strategy that growers may use to maintain typicity of wine style is to change cultivars. This approach may enable fruit

Lead levels in fortified wines

AIM The main lead exposure route is the intake of contaminated food, water, and alcoholic beverages, in particular wine. At the gastric level, Pb is transformed into a soluble compound which, when conveyed into the bloodstream, is the long-term cause of saturnism, intoxication with neurotoxic, nephrotoxic and hematopoietic effects, and with the neurological developmental delay of children. Pb is classified by the International Agency for Research on Cancer as a 2A class, possible carcinogenic to humans. In an opinion on possible health risks, CONTAM considered that cereals, vegetables, drinking water, and wine give a greater contribute to dietary exposure to Pb in Europe. Large quantities of wine, beer, and other alcoholic products drinking can increase daily Pb intake above the maximum permitted levels.