Terroir 2012 banner
IVES 9 IVES Conference Series 9 Conventions and methods towards landscape quality: an application in the Douro (Portugal)

Conventions and methods towards landscape quality: an application in the Douro (Portugal)

Abstract

Vineyards are one of the most recognizable icons of the Mediterranean landscapes and of its cultural identity. In Portugal, in the areas where the terroir are particularly adjusted to the vine culture (Appellation of Origin) important changes have been affecting the landscapes, as a result of both European Agricultural Policy and the international trade market of wine. In fact, important features of traditional vineyard landscapes have not always been taken into consideration as amenities or commodities to the regions development and the market of the wines.

The recognition of some wine regions as World Cultural Heritage by the UNESCO and the recommendations of the European Landscape Convention may be seen as great opportunities to set up innovative concepts into innovative actions towards landscape quality as a fundamental pillar to sustainable development and to the commitment of the different stakeholders in its implementation. The definition of Landscape Quality Objectives in a collaborative way could be seen as the starting point to the implementation of concrete actions targeting the protection, planning and management of the winescapes on a multifunctional basis.

A discussion on opportunities and constrains of spatial planning tools and sector policies, like tourism, will be made, to find out concrete and legal opportunities. A combined reflection amongst the wine producers and other local stakeholders, technical and administration entities, local population and tourists are needed, in order to better understand the relevance of landscape quality in the future development of the winegrowing regions. An example in Douro Demarcated Region will be presented, based on results of the project ORTE as well as of other recent perception studies.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Ana LAVRADOR (1), Rosário OLIVEIRA (2), Elisabeth KASTENHOLZ (3)

(1) and (2) e-GEO, Research Centre for Geography and Regional Planning, Faculdade de Ciências Sociais e Humanas, Universidade Nova de Lisboa, Portugal.
(3) Research Unity GOVCOPP, University of Aveiro, Portugal – Telephone: 00351962383275

Contact the author

Keywords

landscape quality, perception, tourism, Douro Demarcated Region

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Mechanical fruit zone leaf removal and deficit irrigation practices interact to affect yield and fruit quality of Cabernet Sauvignon grown in a hot climate

Cabernet Sauvignon is the top red wine cultivar in CA, however, the hot climate in Fresno is not ideal for Cabernet Sauvignon, particularly for berry color development. Fruit-zone leaf removal and irrigation were studied previously to have the significant effect on grape yield performance and berry quality. But the timing of leaf removal and the timing of irrigation are still inconclusive. Also, mechanical fruit-zone leaf removal is relatively new in CA. Our study aims to identify the interactive effect of mechanical fruit-zone leaf removal and irrigation on Cabernet Sauvignon’s yield performance and fruit quality and find the ideal timing of leaf removal and irrigation to maximize the berry color while maintaining the sustainable yield level.

A phylogenomic study reveals the major dissemination routes of ‘Tempranillo Tinto’ in the Iberian Peninsula

‘Tempranillo Tinto’ is a black-berried Iberian cultivar that originated from a hybridization between cvs. ‘Benedicto’ and ‘Albillo Mayor’ [1]. Today, it is the third most widely grown wine grape cultivar worldwide with more than 200,000 hectares of vineyards mostly distributed along the Iberian Peninsula, where it is also known as ‘Cencibel’, ‘Tinta de Toro’, ‘Tinta Roriz’, and ‘Aragonez’, among other synonyms. Here, we quantified the intra-varietal genomic diversity in this cultivar through the study of 35 clones or ancient vines from seven different Iberian wine-making regions. A comparative analysis after Illumina whole-genome sequencing revealed the presence of 1,120 clonal single nucleotide variants (SNVs).

Spatial variability of temperature is linked to grape composition variability in the Saint-Emilion winegrowing area

Elevated temperature during the grape maturation period is a major threat for grape quality and thus wine quality. Therefore, characterizing the grape composition response to temperature at a larger scale would represent a crucial step towards adaptation to climate change. In response to changes in temperature, various physiological mechanisms regulate grape composition. Primary and secondary metabolisms are both involved in this response, with well-known effects, for example on anthocyanins, and lesser known effects, for example on aromas or aroma precursors. At the field scale or at the regional scale, however, numerous environmental or plant-specific factors intervene to make the effects of temperature difficult to distinguish from overall variability. In this study, it was attempted to overcome this difficulty by selecting well-characterized situations with differing temperatures.
A long-term study of air temperature variability across several Merlot vineyards in the Saint-Emilion and Pomerol wine producing area found significant temperature differences and gradients at various time scales linked to environmental factors. From this study area, a few sites were selected with similar age, soil and training system conditions, and with repeated and contrasted temperature differences during the maturation period. The average temperature difference during the maturation period was about 2°C between cooler and warmer sites, a difference similar to that expected under future climate change scenarios. In close vicinity to the temperature sensors at each site, grape berries were sampled at different times until full maturity during 2019 and 2020. Also, berries from bunches on either side of the row were analyzed separately, allowing an investigation of bunch exposure effect associated with the coupling of berry temperature and solar radiation. Four replicates of pooled berries for each time – site – bunch exposure combination were obtained and analyzed for biochemical composition. Analyses of variance of the biochemical composition data collected at different sampling times reveal significant effects associated with temperature, site, and bunch azimuth. For instance, anthocyanins in grape skins are clearly influenced by temperature and solar radiation exposure, with up to 30% reduction in warmer conditions.

Exploring the mechanisms of grapevine single berry development and ripening

The strategy of single berry phenotyping is a recently rediscovered research tool that has gained great attention. The latest studies have indicated that previous physiological models based on pooling asynchronous populations of berries provided biased or blurred information on berry development key players. The possibility of monitoring and sampling single synchronized berries to study their development sequentially has opened new lines of research aimed at unraveling the genes that regulate grapevine fruit development. This study aimed to decipher the gene pathways responsible for the activation/deactivation of physiological processes involved in the green phase of growth, the onset of ripening, and the second growth phase.

First quantification of glut-3SH-SO3 and glut-3SH-al in juice and wine

3-Sulfanylhexan-1-ol (3SH) is a key impact odorant of white wines such as Sauvignon Blanc.[1] In particular, the varietal characters of Sauvignon Blanc, especially from Marlborough New Zealand, are strongly influenced by the concentrations of 3SH.[2,3