Terroir 2020 banner
IVES 9 IVES Conference Series 9 Projections of vine phenology and grape composition of Tempranillo variety In Rioja DOCa (Spain) under climate change

Projections of vine phenology and grape composition of Tempranillo variety In Rioja DOCa (Spain) under climate change

Abstract

Aims: Some of the most direct effects of climate variability on grapevines are the changes in the onset and timing of phenological events and in the length of the growing season, which may affect grape quality. The aim of this research was to analyze the projected changes in vine phenology and on grape composition of the Tempranillo variety in Rioja DOCa under different climate change scenarios.

Methods and Results: Three zones of Rioja DOCa, located at different elevations and with different climatic conditions were compared. For the analysis, vine phenology referred to flowers separated and veraison (stage H and M, according to Baillod and Baggiolini) and maturity defined based on the date at which 13ᵒ were reached, were analysed in the three zones for the period between 2008 and 2018. Grape composition at maturity, including variables related to acidity and polyphenol content was also evaluated for the same period. The weather characteristics for the places where the plots were located were also analysed using data of different meteorological stations belonging to the Rioja government. The thermal requirements to reach each phenological stage were evaluated and expressed as the GDD accumulated from DOI=60, which were considered to predict the changes under future climatic conditions. The analysis was done for the future conditions predicted by 2050 and 2070 under two Representative Concentration Pathway (RCP) scenarios –RCP4.5 and RCP8.5-, which were simulated based on an ensemble of 10 models.

An advance of the phenological stages was predicted, higher for veraison and maturity than for floraison. The advance of the stage H, M and maturity for the three zones by 2050 could be up to 5, 8, and 12 days, respectively under the RCP4.5 emission trajectory, and up to 8, 12 and 15, respectively under the RCP8.5 emission trajectory. The predicted advances indicate that the differences in timing that already exists between zones will be maintained or even increase, which will imply reaching maturity in the second half of August in the warmer area and in earlier September in the coolest one. Grape acidity could suffer a decrease with increasing temperature, while anthocyanins could decrease by the increase of temperature but increase due to the higher expected water deficit, and these changes could differ among zones. In addition, due to the advance in the phenology a decoupling between anthocyanins and sugars could result, which suggest the need of applying new management techniques to maintain grape quality.

Conclusion: 

The Tempranillo variety cultivated in Rioja DO may suffer significant changes in phenology and in grape composition under climate change, affected both by increasing temperatures and higher water deficits. However, differences were found between zones within the Rioja DOCa.

Significance and Impact of the Study: The study allowed quantifying the differences in the impact that climate change may produce in phenology and in grape composition in zones with different climatic conditions, which may be taken under consideration to identify potential areas in which the Tempranillo variety may suffer lower impacts under climate change.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

María Concepción Ramos1*, Fernando Martínez de Toda2

1Department of Environment and Soil Sciences-Agrotecnio, University of Lleida, Spain
2ICVV- Institute of Grapevine and Wine Science (University of La Rioja, CSIC, Government of La Rioja), Logroño, Spain

Contact the author

Keywords

Acidity, anthocyanins, berry weight, polyphenols, soil characteristics, available water content

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Genomic characterization of extant genetic diversity in grapevine

Dating back to the early domestication period of grapevine (Vitis vinifera L.), expansion of human activity led to the creation of thousands of modern day genotypes that serve multiple purposes such as table and wine consumption. They also encompass a strong phenotypic diversity. Presently, viticulture faces various challenges, which include threatening climatic change scenarios and an historical track record of genetic erosion. Paritularly with regards to wine varieties, there is a pressing need to characterize the extant genetic diversity of modern varieties, as a means to delvier knowledge-based solutions under a rapidly evolving scenario, that may enable improved yields and profiles, resistance to pathogens, and increased resilience to climate change.

Grapevine responses to red blotch disease – a structural-functional perspective of symptomatology development and fruit quality

Red Blotch disease caused by Grapevine red blotch-associated virus (GRBaV) is a severe concern to grape growers and winemakers in major grape-growing regions worldwide. One key aspect of all viruses, including Red Blotch, is their intimate association with cell components and anomalous structures following infection. Therefore, the objective of this study was to analyze symptomatology, vine function, fruit quality and ultrastructure of various tissues and document the relationship of ultrastructural cytopathology with the GRBaV infection in Pinot Noir and Merlot employing various microscopy techniques.

Partial rootzone drying (PRD): strategic irrigation management as viticultural tool affecting plant physiology and berry quality

Partial rootzone drying (PRD) is an irrigation management technique designed to reduce water use in grapevines without a decline in yield, thereby increasing water use efficiency (WUE). The principle of PRD is to keep part of the root system at a constant drying rate to produce soil derived signals to above-ground plant organs to induce a

Energy optimization of the Charmat-Martinotti refermentation process

The european union has estimated that energy consumption for wine production is about 1,750 million kwh per year, of which 500 million kwh is attributable to italy. In recent years, Italy has emerged as the world’s leading wine producer with about 50 million hectoliters per year. About 20 percent (9.8 million hectoliters) of Italian wine is marketed after refermentation according to the Charmat-Martinotti method.

Influence of climate change conditions (elevated CO2 and temperature) on the grape composition of five tempranillo (Vitis vinifera L.) Somatic variants

The current levels of greenhouse gas emissions are expecting to provoke a change on the environmental conditions which, among others, will include a rise of global mean surface temperature and an increment of atmospheric CO2 levels (IPCC, 2014), known as climate change. The response of grapevine (Vitis vinifera L.), one of the most important crops in Europe, from both a cultural and economic point of view, is not completely understood yet and the studies considering the interaction between factors are scarce. Besides, the potential variety of responses among somatic variants needs to be studied in order to be exploited in the avoidance of undesired traits linked to climate change (Carbonell‐Bejerano et al., 2015).