Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 Comparison between satellite and ground data with UAV-based information to analyse vineyard spatio-temporal variability

Comparison between satellite and ground data with UAV-based information to analyse vineyard spatio-temporal variability

Abstract

OENO One special issue

Currently, the greatest challenge for vine growers is to improve the yield and quality of grapes by minimizing costs and environmental impacts. This goal can be achieved through a better knowledge of vineyard spatial variability. Traditional platforms such as airborne, satellite and unmanned aerial vehicles (UAVs) solutions are useful investigation tools for vineyard site specific management. These remote sensing techniques are mainly exploited to get the Normalized Difference Vegetation Index (NDVI), which is useful for describing the morpho-vegetational characteristics of vineyards. This study was conducted in a vineyard in Tuscany (Italy) during the 2017, 2018 and 2019 seasons. Ground data were acquired to detect some agronomic variables such as yield (kg/vine), total soluble solids (TSS), and pruning weight (kg/vine). Remote sensed multispectral images acquired by UAV and Sentinel-2 (S2) satellite platform were used to assess the analysis of the vegetative variability. The UAV NDVI was extracted using both a mixed pixels approach (both vine and inter-row) and from pure canopy pixels. In addition to these UAV layers, the vine thickness was extracted. The aim of this study was to evaluate both classical Ordinary Least Square (OLS) and spatial statistical methods (Moran Index-MI and BILISA) to assess their performance in a multi-temporal comparison between satellite and ground data with UAV information. Good correlations were detected between S2 NDVI and UAV NDVI mixed pixels through both methods (R2 = 0.80 and MI = 0.75). Regarding ground data, UAV layers showed low and negative association with TSS (MI = – 0.34 was the lowest value) whereas better spatial autocorrelations with positive values were detected between UAV layers and both yield (MI ranged from 0.42 to 0.52) and pruning weight (MI ranged from 0.45 to 0.64). The spatial analysis made by MI and BILISA methodologies added more information to this study, clearly showing that both UAV and Sentinel-2 satellite allowed the vigour spatial variability within the vineyard to be detected correctly, overcoming the classical comparison methods by adding the spatial effect. MI and BILISA play a key role in identifying spatial patterns and could be successfully exploited by agricultural stakeholders.

DOI:

Publication date: March 19, 2021

Issue: Terroir 2020

Type: Video

Authors

Laura Pastonchi, Salvatore Filippo Di Gennaro*, Piero Toscano and Alessandro Matese

Institute of BioEconomy, National Research Council (CNR-IBE), Via G. Caproni, 8, 50145 6 Florence, Italy

Contact the author

Keywords

Unmanned Aerial Vehicle (UAV), Sentinel-2 data precision viticulture, Moran’s index (MI), Local indicators of spatial autocorrelation (LISA), vineyard variability

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Effect of two water deficit regimes on the agronomic response of 12 grapevine varieties cultivated in a semi-arid climate

The Mediterranean basin is one of the most vulnerable regions to Climate Change effects. According to unanimous forecasts, the vineyards of Castilla-La Mancha will be among the most adversely affected by rising temperatures and water scarcity during the vine’s vegetative period. One potential strategy to mitigate the negative impacts of these changes involves the identification of grapevine varieties with superior water use efficiency, while ensuring satisfactory yields and grape quality.

The influence of vine row position in terraced Merlot vineyards on water deficit and polyphenols – case study in the Vipava Valley, Slovenia

A study was conducted in the Vipava Valley (Slovenia) to understand the effects of positioning rows of Merlot (Vitis vinifera L.) vines on terraces on plant available water, yield, and grape composition

Evaluation of the composition of pomace from grapes grown in the slopes of the Popocatépetl volcano (Puebla, Mexico). Feasibility of its application for obtaining functional foods

Grape pomace is the main byproduct generated during wine production and is primarily composed of skins and seeds, which are obtained after the pressing stage [1]. This byproduct retains a significant amount of nutrients, such as fiber, phenolic compounds, unsaturated fatty acids, vitamins, and minerals.

Methodology to assess vine cultivation suitability using climatic ranges for key physiological processes: results for three South African regions

Le climat a de fortes implications sur le bon fonctionnement physiologique de la vigne et a besoin d’être quantifié afin de déterminer l’aptitude des régions à la culture de la vigne. Une méthode, qui pourrait éventuellement servir à prévoir l’aptitude des régions à la culture de la vigne, est proposée.

ENRICHMENT OF THE OENOLOGICAL MALDI-TOF/MS PROTEIN SPECTRA DATABASE FOR RELIABLE OENOLOGICAL YEAST AND BACTERIA IDENTIFICATION

The Matrix Assisted Laser Desorption/Ionization–Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) technology is commonly used in food and medical sector to identify yeast or bacteria species isolated from a nutritive culture media. Since a decade, brewery and oenology industries have been attracted to this method which combines fast analysis times, reliability and low cost of analysis. Briefly, this method is based on the comparison of the MALDI-TOF/MS protein spectra of an isolated colony of yeast or bacteria with those contain in a manufacturer’s reference protein spectra database. Initiated in 2015, the creation of the first oenological mass spectra database has proved to be essential for increase quality of species identification.