Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 Taking advantage of difficulties. Variable rate application based on canopy maps to achieve a sustainable crop

Taking advantage of difficulties. Variable rate application based on canopy maps to achieve a sustainable crop

Abstract

Aim: The aim of this work was to evaluate the use of Variable Rate Application technologies based on prescription maps in commercial vineyards with large intra-parcel variability to achieve a more sustainable distribution of Plant Protection Products (PPP).

Methods and Results: Eight vineyard plots on three Spanish wineries (Jean Leon, Viñas del Vero and Martín Códax) were selected. In all of these plots, a Variable Rate Application (VRA) system was implemented during the whole season. A UAV flew over plots at three different crop stages (BBCH 60, 75 and 81) in order to generate the corresponding canopy maps. For this process, a multispectral camera with five spectral bands (Red, Green, Blue, NIR and RedEdge) was embedded on the UAV. In order to obtain a vigor map, the NDVI vegetative index was calculated and aggregated at three different levels (low, medium and high vigor). The three different vigor zones were validated by manual measurements of canopy height and canopy width in the three defined zones. Generated canopy maps were transformed into application prescription maps using the DSS DOSAVIÑA®. Prescription maps were uploaded into the VRA sprayer that works as follows: 1) determining its GPS position on the plot, 2) getting the objective volume rate from the prescription map considering the GPS position, 3) reading the actual spraying pressure, 4) readjusting the spraying pressure to the objective volume rate 5) recording, every second, actual data about forward speed, pressure, volume rate and prescribing a volume rate and 6) generating an actual application map with the recorded data. The actual application maps obtained allows comparison with the VRA technology versus the conventional spray application. Preliminary data demonstrated a 20% savings both, on pesticide amount and on water volume, resulting also in a more profitable time consumption. Biological efficacy evaluation demonstrated no differences in control, only an increase in the efficiency of pesticide application and a reduction in environmental contamination risk.

Conclusions:

This work demonstrates in the success of PPP application using VRA technologies. The system was able to maintain or even increase the spray distribution quality in the whole canopy structure, reducing losses to the ground and cutting down drift by adjusting the optimal amount of liquid according the canopy characteristics. As in all cases PPP concentration was maintained following the pesticide label recommendations, the VRA system reduced the total amount of PPP per hectare. All together effective pest/disease control was maintained.

Significance and Impact of the Study: The PPP application requires accuracy, as imprecise or excessive use can lead to serious problems such as environmental pollution, traces of pesticides in food, and health issues in humans. The high degree of intra-parcel variability in the vineyard crop makes it difficult to determine a suitable solution for all areas of the plot. A more sustainable use of PPP will reduce the total amount of pesticides used, reduce the environmental contamination risk and increase food quality.

DOI:

Publication date: March 23, 2021

Issue: Terroir 2020

Type: Video

Authors

Javier Campos1, José Mª Ayuso2, Mireia Torres3, Miguel Tubío4, Emilio Gil1*

1DEAB – Universitat Politécnica de Catalunya – Castelldefels (Barcelona), Spain
2 Viñas del Vero -Winery – DO Somontano, Spain
3 Familia Torres- Jean Leon Winery, DO Penedes, Spain
4Bodega Martín Códax, DO Rias Baixas, Spain

Contact the author

Keywords

Variable rate application, vineyard, prescription map, unmanned aerial vehicle, DOSAVIÑA

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Phenolic acid characterization in new varieties descended from Monastrell.

Phenolic acids are phytochemicals that are expansively distributed in daily food intake. Phenolic acids are involved in various physiological activities, such as nutrient uptake, enzyme activity, protein synthesis, photosynthesis, and cytoskeleton structure in seeds, leaves, roots, and stems. Also exhibit antibacterial, antiviral, anticarcinogenic, anti-inflammatory, and vasodilatory activities due to their antioxidant property.

Impact of climate change on the viticultural climate of the Protected Designation of Origin “Jumilla” (SE Spain)

Protected Designation of Origin “Jumilla” (PDO Jumilla) is located in the Spanish provinces of Albacete and Murcia, in the South-eastern part of the Iberian Peninsula, where most of the models predict a severe impact of climate change in next decades. PDO Jumilla covers an area of 247,054 hectares, of which more than 22,000 hectares

Low and zero alcohol “wines”: impact of different dealcoholization processes on phenol profile and health benefits

Consumers’ demand for non-alcoholic wine has notably increased in the last years: this trend is a consequence of a growing interest in more healthy habits, and as a response to higher alcohol levels in wine due to climate change. In addition, drinking limitations due to physiological/pathological conditions (e.g., pregnancy, diabetes, hepatic disorders), driving regulations, ethical/religious considerations, and high import taxes on alcoholic beverages have positively influenced this marked (us$ 1.6 billion in 2021). International organisation of vine and wine (OIV) established that alcohol content defining wines must not be less than 8.5% vol, (OIV, 2017).

Study of the effect of native vineyard bacteria on the expression of Plasmopara viticolaeffectors

Downy mildew, caused by the oomycete Plasmopara viticola (Berk. & M.A. Curtis) Berl. & De Toni, is one of the most destructive grapevine diseases mostly affecting Vitis vinifera L. and impacting on viticulture. The pathogen invasion can induce in grapevine multiple defense reactions, first PAMP-Triggered Immunity and secondly Effector-Triggered Immunity. Plasmopara viticola can overcome these defense mechanisms through the secretion of effectors, such as RxLR, into the plant cells, making it easier for the oomycete to infect grapevines. Currently, the use of chemical pesticides remains the most effective way to control the pathogen with severe negative side effects on the environment and animal health.

Where the sky is no limit — The transformation of wine marketing through text-to-video generation AI model

The introduction of ai-driven tools in digital content creation represents a significant shift in the landscape of marketing, particularly for industries reliant on rich visual storytelling such as the wine sector. The development of ai models like openai’s sora, runway’s gen-2 or google’s lumiere, which can generate realistic video content from textual descriptions, offers promising new avenues for enhancing brand narrative and consumer engagement. This research explores the potential of text-to-video (t2v) ai models to revolutionize wine marketing by creating dynamic, engaging content that captures the essence of vineyards and their products without the need for traditional video production processes.