Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 Taking advantage of difficulties. Variable rate application based on canopy maps to achieve a sustainable crop

Taking advantage of difficulties. Variable rate application based on canopy maps to achieve a sustainable crop

Abstract

Aim: The aim of this work was to evaluate the use of Variable Rate Application technologies based on prescription maps in commercial vineyards with large intra-parcel variability to achieve a more sustainable distribution of Plant Protection Products (PPP).

Methods and Results: Eight vineyard plots on three Spanish wineries (Jean Leon, Viñas del Vero and Martín Códax) were selected. In all of these plots, a Variable Rate Application (VRA) system was implemented during the whole season. A UAV flew over plots at three different crop stages (BBCH 60, 75 and 81) in order to generate the corresponding canopy maps. For this process, a multispectral camera with five spectral bands (Red, Green, Blue, NIR and RedEdge) was embedded on the UAV. In order to obtain a vigor map, the NDVI vegetative index was calculated and aggregated at three different levels (low, medium and high vigor). The three different vigor zones were validated by manual measurements of canopy height and canopy width in the three defined zones. Generated canopy maps were transformed into application prescription maps using the DSS DOSAVIÑA®. Prescription maps were uploaded into the VRA sprayer that works as follows: 1) determining its GPS position on the plot, 2) getting the objective volume rate from the prescription map considering the GPS position, 3) reading the actual spraying pressure, 4) readjusting the spraying pressure to the objective volume rate 5) recording, every second, actual data about forward speed, pressure, volume rate and prescribing a volume rate and 6) generating an actual application map with the recorded data. The actual application maps obtained allows comparison with the VRA technology versus the conventional spray application. Preliminary data demonstrated a 20% savings both, on pesticide amount and on water volume, resulting also in a more profitable time consumption. Biological efficacy evaluation demonstrated no differences in control, only an increase in the efficiency of pesticide application and a reduction in environmental contamination risk.

Conclusions:

This work demonstrates in the success of PPP application using VRA technologies. The system was able to maintain or even increase the spray distribution quality in the whole canopy structure, reducing losses to the ground and cutting down drift by adjusting the optimal amount of liquid according the canopy characteristics. As in all cases PPP concentration was maintained following the pesticide label recommendations, the VRA system reduced the total amount of PPP per hectare. All together effective pest/disease control was maintained.

Significance and Impact of the Study: The PPP application requires accuracy, as imprecise or excessive use can lead to serious problems such as environmental pollution, traces of pesticides in food, and health issues in humans. The high degree of intra-parcel variability in the vineyard crop makes it difficult to determine a suitable solution for all areas of the plot. A more sustainable use of PPP will reduce the total amount of pesticides used, reduce the environmental contamination risk and increase food quality.

DOI:

Publication date: March 23, 2021

Issue: Terroir 2020

Type: Video

Authors

Javier Campos1, José Mª Ayuso2, Mireia Torres3, Miguel Tubío4, Emilio Gil1*

1DEAB – Universitat Politécnica de Catalunya – Castelldefels (Barcelona), Spain
2 Viñas del Vero -Winery – DO Somontano, Spain
3 Familia Torres- Jean Leon Winery, DO Penedes, Spain
4Bodega Martín Códax, DO Rias Baixas, Spain

Contact the author

Keywords

Variable rate application, vineyard, prescription map, unmanned aerial vehicle, DOSAVIÑA

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Cover crops competition for water in vineyards: case studies in mediterranean terroirs

Vineyard cover cropping is a cultural practice widely used in many of the world’s winegrowing regions being one of the most recommended practices to face climate changes and to promote vineyard environmental sustainability.

Complementarity of measurements of electric resistivity of soils and ΔC13 of must in studies and valorization of wine terroirs

The correlations between vine water deficit cumulated over the ripening period of grapes, assessed by ΔC13 in must sugar, and the main analytic variables of grapes are significant. As a result ΔC13 is a useful tool in zoning homogeneous areas according to their technological qualities when harvesting.

Induction of polyphenols in seedlings of Vitis vinifera cv. Monastrell by the application of elicitors

Contamination problems arising from the use of pesticides in viticulture have raised concerns. One of the alternatives to reduce contamination is the use of elicitors, molecules capable of stimulating the natural defences of plants, promoting the production of phenolic compounds (PC) that offer protection against biotic and abiotic stress. Previous studies on Cabernet-Sauvignon seedlings demonstrated that foliar application of elicitors methyl jasmonate (MeJ) and benzothiadiazole (BTH) increased proteins and PC involved in grapevine defence mechanisms. However, no trials had been conducted on Monastrell seedlings, a major winegrape variety in Spain.

Towards faultless Grenache wines: impact of climate and maturity

Climate change is affecting wine production and inducing significant variability in wine composition between vintages.

Aroma profile of Oenococcus oeni strains in different life styles

AIM: Three Oenococcus oeni strains previously isolated from spontaneous malolactic fermentation were characterized for their surface properties. Planktonic and sessile cells were investigated for aroma compounds production and the expression of genes involved in citrate and malate metabolism (citE and mleA, respectively), glycoside-hydrolase (dsrO), fructansucrase (levO), rhamnosyl-transferase (wobB), glycosyltransferase (wobO).