Terroir 2020 banner
IVES 9 IVES Conference Series 9 Nitrogen isotope ratio (δ15N) as a tool to trace the major nitrogen source in vineyards

Nitrogen isotope ratio (δ15N) as a tool to trace the major nitrogen source in vineyards

Abstract

Aim: to elucidate if it is possible to detect variations in the source of nitrogen (organic vs. inorganic) measuring nitrogen isotope ratio (δ15N) in berries and to examine the degree of variation occurring for this parameter naturally within a vineyard.

Methods and Results: two nitrogen fertilization strategies based on the use of organic and inorganic nitrogen sources were compared through four consecutive seasons in a vineyard, and berry δ15N was measured at harvest. The source of nitrogen affected remarkably nitrogen isotope ratio, as samples from organically fertilized vines always showed higher δ15N values. Additionally, variations in berry δ15N were measured during two seasons in a 60-node sampling grid in a 4.2 ha vineyard, showing that a wide range of variation existed for δ15N within the vineyard, and that its values followed a structured pattern that was in accordance with variations in altitude, being lower in the highest parts of the field.

Conclusions:

The source of nitrogen (organic vs. inorganic) affects berry δ15N. Nevertheless, the degree of variation observed naturally within a single field is very relevant, and associated to variations in altitude. 

Significance and Impact of the Study: this is the first study that, to our knowledge, demonstrates a direct relationship between nitrogen source and nitrogen isotope ratio in grapevines, and opens the door to its use in grapevine nutrition and terroir studies.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Luis G. Santesteban1*, Maite Loidi1, Inés Urretavizcaya2, Oihane Oneka1, Diana Marín1, Ana Villa1, Blanca Mayor1, Sara Crespo1, Jorge Urrestarazu1, Carlos Miranda1, F. Javier Abad1, 2, José B. Royo1

1Dept. of Agronomy, Biotechnology and Food Science, Univ. Pública de Navarra- UPNA, Campus Arrosadia, 31006 Pamplona, Spain
2Instituto de Agrobiotecnología (IdAB-CSIC), Avenida Pamplona 123, 31192, Mutilva Baja, Spain
3INTIA, Edificio de Peritos Avda. Serapio Huici nº 22, 31610, Villava, Spain

Contact the author

Keywords

Nitrogen, fertilization, organic, inorganic, Vitis vinifera L.

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Mobilizing endogenous transposable elements for grapevine improvement: a genomic and epigenomic approach in New Zealand Sauvignon Blanc

Efforts to improve the New Zealand wine industry’s climate resilience and sustainability through grapevine improvement are limited by germplasm availability and a reliance on Sauvignon Blanc exports. To address this, we are working to generate a population of 12,000 individuals with unique genetic traits, from which to select future clones for major export varieties.

Sauvignon Blanc plantlets are being regenerated from embryogenic callus, using an approach designed to mobilise endogenous transposable elements as mutagens.

Polyphenols in kombucha: Metabolomic analysis of biotransformations during fermentation

Kombucha is a non-alcoholic beverage made of sugared tea that is transformed by a symbiotic consortium of yeasts and bacteria. This beverage is increasingly produced at industrial scale, but its quality standards remain to be defined. Metabolomics analysis was carried out using FT-ICR-MS to understand the chemical transformations induced by the production phases and the type of tea on

Understanding the impact of climate change on anthocyanin concentrations in Napa Valley Cabernet Sauvignon

Climate change is having a significant impact on the wine industry through more regular drought conditions, fires, and heat events, leading to crop loss. Furthermore, these events can reduce overall quality of the fruit, even when crop yields are not impacted. Anthocyanins are considered one of the most important classes of compounds for red wine production and are known to be sensitive to vine water status and heat events.

Investigating winemaking techniques for resistant varieties: the impact of prefermentative steps on must quality

Resistant grape varieties are gaining interest in viticulture due to their resistance to diseases, allowing to drastically reduces pesticides in viticulture [1].

Nitrogen requirements of table grape cultivars grown in the san Joaquin valley of California

Ground water in the interior valleys of California is contaminated with nitrates derived from agricultural activities, primarily the over-fertilization of crops.