Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Influence on grape aroma of nitrogen compounds and elicitors foliar applications in vineyards

Influence on grape aroma of nitrogen compounds and elicitors foliar applications in vineyards

Abstract

AIM: The grape volatile compounds determine the wine quality and typicity [1]. Thus, looking for agronomic tools to improve its composition it is of great interest in the sector [2]. The aim of this work was to study the effects of several foliar applications in Garnacha, Tempranillo, and Graciano grapevines in order to enhance their grape volatile composition.

METHODS: The field trial involved the application of two nitrogen compounds, urea (Ur) and phenylalanine (Phe), and two elicitors, methyl jasmonate (MeJ) and a yeast extract (YE), as well as a control (water) in vines of these grape varieties. All treatments were carried out at veraison and one week later. The grapes were collected at their optimal technological maturity. The analysis of grape volatile compounds was carried out by HS-SPME-GC-MS [3].

RESULTS: For Garnacha, most terpenes, and C13 norisoprenoids increased their grape content by applying Ur and Phe, and especially MeJ; there is a large increase in 2-phenylethanol and 2-phenylethanal with the Phe application. For Tempranillo, treatments with Ur and MeJ improved the synthesis of most terpenoids, while the application of Phe was negative for the content of C13 norisoprenoids; and benzenoid compounds increased, in general, with all foliar treatments. For Graciano, a trend to decrease the terpenoids content in grapes with the treatments was observed, especially with Ur and YE; Phe application increased C13 norisoprenoids content, while the application of YE significantly decreased them; this treatment decreased benzyl alcohol and increased 2-phenylethanol contents in grapes.

CONCLUSIONS:

The effect of foliar applications on volatile composition was dependent on the grape variety. The most positive treatments were: Phe and MeJ for Garnacha, Ur and MeJ for Tempranillo, and Phe for Graciano.

DOI:

Publication date: September 1, 2021

Issue: Macrowine 2021

Type: Article

Authors

Sandra Marín-San Román, Carretera De Burgos,  Sáenz De Urturi P. Rubio-Bretón E. Baroja E.P. Pérez-Álvarez T. Garde-Cerdán* 

Instituto De Ciencias De La Vid Y Del Vino (Csic, Universidad De La Rioja, Gobierno De La Rioja). Carretera De Burgos, Km. 6. 26007 Logroño, Spain  *

Contact the author

Keywords

volatile compounds; grape; must; hs-spme-gc-ms; aroma; foliar application; elicitors; nitrogen compounds

Citation

Related articles…

Pesticide removal in wine with a physical treatment by molecular sieving

All along the winemaking process, conditioning and aging, wine is susceptible to be contaminated by different molecules. Contaminations can have various origins, related to wine microorganisms or as a result of an exogenous contamination. The aforementioned contamination of the wine can be caused by the migration of molecules from the materials in contact with the wine or by a contamination from exogenous molecules present in the air. Regardless of the source of the contamination, mainly two types of consequences can be observed.

Nitrogen metabolism in Kluyveromyces marxianus and Saccharomyces cerevisiae: towards a better understanding of fermentation aroma production

During wine alcoholic fermentation, yeasts produce volatile aroma compounds from sugar and nitrogen metabolism. Some of the metabolic pathways leading to these compounds have been known for more than a century.

CHANGES IN CU FRACTIONS AND RIBOFLAVIN IN WHITE WINES DURING SHORT-TERM LIGHT EXPOSURE: IMPACTS OF OXYGEN AND BOTTLE COLOUR

Copper in white wine can be associated with Cu(II) organic acids (Cu fraction I), Cu(I) thiol species (Cu fraction II), and Cu sulfides (Cu fraction III). The first two fractions are associated with the repression of reductive aromas in white wine, but these fractions gradually decrease in concentration during the normal bottle aging of wine. Although exposure of white wine to fluorescent light is known to induce the accumulation of volatile sulfur compounds, causing light-struck aroma, the influence on the loss of protective Cu fractions is uncertain. Riboflavin is known to be a critical initiator of photochemical reac-tions in wine, but the rate of its decay under short-term light exposure in different coloured bottles and for wine of different oxygen concentrations is not well understood.

Sugar accumulation disorder Berry Shrivel – from current knowledge towards novel hypothesis

In contrast to fruit and grape berry ripening, the biological processes causing ripening disorders are often much less understood, although shriveling disorders of fruits are manifold and contribute to yield losses and reduced fruit quality worldwide. Shrinking berries are a common feature for all shriveling disorders in grapevine although their timing of appearance during the berry ripening process and their underlying induction processes distinct them from each other. The sugar accumulation disorder Berry Shrivel (BS) is characterized by a suppression of sugar accumulation short after veraison resulting in berries low in sugar content and anthocyanins in berry skins, while the organic acid content is similar. Recent studies analyzed the biochemical, morphological and molecular processes affected in BS berries and linked early changes to the period of ripening onset [1,2].

MOUSY OFF-FLAVOURS IN WINES: UNVEILING THE MICROORGANISMS BEHIND IT

Taints and off-flavours are one of the major concerns in the wine industry and even if the issues provoked by them are harmless, they can still have a negative impact on the quality or on the visual perception of the consumer. Nowadays, the frequency of occurrence of mousy off-flavours in wines has increased.
The reasons behind this could be the significant decrease in sulphur dioxide addition during processing, the increase in pH or even the trend for spontaneous fermentation in wine. This off-flavour is associated with Brettanomyces bruxellensis or some lactic acid bacteria metabolisms.