Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Understanding the genetic determinism of phenological and quality traits in ‘Corvina’ grape variety for selection of improved genotypes

Understanding the genetic determinism of phenological and quality traits in ‘Corvina’ grape variety for selection of improved genotypes

Abstract

Downy and powdery mildew are major issues in grapevine cultivation, requiring many phytosanitary treatments to ensure yield and quality. Climatic changes are also challenging grape cultivation in several areas, leading to anticipation of phenological events and increasing impact of temperature on grape quality. Beside disease resistance, adaptation of varieties to changing climate is thus an additional breeding target, which includes the selection of late ripening varieties that may escape the warmer summer conditions, while preserving distinctive performance and wine quality. With the aim to increase our understanding of the genetic determinism for phenological and quality traits, we have crossed the autochthonous cv. Corvina, typical of the Verona province area, to previously identified divergent varieties. Segregating cross populations of Corvina x Solaris and Cabernet-Sauvignon x Corvina including a high number of seedlings were developed, propagated and grown in field conditions for mapping of traits. High-density genetic maps based on SNPs obtained through hybridization to an Illumina Vitis18KSNP chip are produced. Field phenotyping includes the evaluation of the main phenological stages (budbreak, flowering, veraison and ripening) together with the assessment of some morphological and quality traits at harvest on all progenies with the final purpose of QTL mapping. Moreover, the introgression of resistance sources from cv Solaris is assessed in the relative cross. Response to Plasmopara viticola is investigated especially in selected resistant genotypes under field conditions or following inoculation of leaf discs and shows different degrees of resistance in some Corvina offsprings differing in the number of inherited Rpv loci. Based on resistance gene introgression as well as on phenotypic parameters, some selections are being propagated for a deeper characterization. New markers derived from the characterization of Corvina-crosses are expected to further assist future selections. Altogether, the described approaches will improve our understanding of the genetic control of phenology and berry quality traits, thus assisting breeding in this important local variety.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Diana Bellin, 1, Martina Marini, 1, Ron Shmuleviz, 1, Alice Baroni, 1,  Riccardo Mora, 1, Tahir Mujtaba, 1, Martina Zerneri, 1, Giada Bolognesi, 1, Jessica Vervalle, 2, Laura Costantini, 3, Maria Stella Grando, 3, Giovanni Battista Tornielli, 1,  Annalisa Polverari, 1

1, Department Of Biotechnology, University Of Verona,
2, Stellenbosch University
3, Fondazione Edmund Mach – Istituto Agrario San Michele All’Adige

Contact the author

Keywords

grapevine, corvina, plasmopara viticola, plant phenology

Citation

Related articles…

An evaluation of the physiological responses of young grapevines planted and maintained under water constraint 

The aim of this ongoing study is to evaluate the degree of adaptability of grapevine scion:rootstock combinations to different conditions of water constraint. Here we present results from the young vine development phase, using three scenarios of water constraint that were implemented from planting. The experimental vineyard was established in 2020 and the data presented will cover the 2021/2022 and 2022/2023 seasons. The experiment consisted of the cultivars Pinotage (PIN), Shiraz (SHI) and Cabernet Sauvignon (CAB), grafted on two rootstocks, Richter 110 (R110) and USVIT-8-7 (US87).

Study and valorization of vineyards “terroirs” of A.O.C. Cahors (Lot, France)

In the current context of market competition and consumption evolution, it is necessary to produce wines of a genuine typicity. The Terroir represents an unique and irreproducible inheritance that can be valorized through the origin and the sensory characteristics of the wines.

Differential gene expression and novel gene models in 110 Richter uncovered through RNA Sequencing of roots under stress

The appearance of the Phylloxera pest in the 19th century in Europe caused dramatical damages in grapevine diversity. To mitigate these losses, grapevine growers resorted to using crosses of different Vitis species, such as 110 Richter (110R) (V. berlandieri x V. rupestris), which has been invaluable for studying adaptations to stress responses in vineyards. Recently, a high quality chromosome scale assembly of 110R was released, but the available gene models were predicted without using as evidence transcriptional sequences obtained from roots, that are crucial organs in rootstock, and they may express certain genes exclusively. Therefore, we employed RNA sequencing reads of 110R roots under different stress conditions to predict new gene models in each haplotype of 110R under different stresses.

Red wine substituted esters involved in fruity aromatic expression: an enantiomeric approach to understand their sensory impact and their pathway formation

Among red wines ethyl esters, those from short hydroxylated and branched-chain aliphatic acids constitute a family with a particular behavior and sensory importance. They have been previously discussed in the literature [1] and recent studies have established that some of them were strongly involved in of red wines’ fruity aroma [2]. As some among them have an asymmetrical carbon atom, it seemed important to separate their different enantiomers to obtain an accurate assessment of their organoleptic impact. Three chiral esters have been identified, presenting alkyl and/or hydroxyle substituants: ethyl 2-hydroxy-4-methylpentanoate, ethyl 2-methylbutanoate, and ethyl 3-hydroxybutanoate.

Geological history and landscape of the Coastal wine-growing region, South Africa

The geology of the Western Cape testifies to the former existence of a late Precambrian supercontinent, its fragmentation, the closure of an ocean between the South African and South American continental precursors (Kalahari and Rio de la Plata cratons), the accumulation of marine sediments and limestones, and their compression during a collision between these cratons