Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Defoliation timing impacts berry secondary metabolites and sunburn damage

Defoliation timing impacts berry secondary metabolites and sunburn damage

Abstract

Sunburn is a physiological disorder that leads to yield and quality losses in a range of fruits such as grapes and apples. It affects the visual appearance and the composition of the fruit, leading to irreversible changes and ultimately, cell death in extreme situations. Sunburn is caused by a combination of excessive radiation and temperature that lead to photo- and thermal stress, the formation of reactive oxygen species and oxidative stress. A series of factors, such as environmental conditions, grape variety and development stage modulate the final amount of damage. In turn, berries have evolved a series of mechanisms to protect themselves that are dependent on developmental stage [1]. Secondary metabolites such as the carotenoids, polyphenols and even the aroma compounds can act as antioxidants and light screens [2-4], however, the ability to upregulate their production depends on ripening stage [5]. This project aimed to evaluate the changes in secondary metabolism generated by varying degrees of sunburn damage in Chardonnay grapes, and how exposure of berries through defoliation at two different stages in development could modulate sunburn intensity.Field trials were conducted in two vineyards in the Orange region (NSW, Australia) during 2019. Treatments consisted of vines defoliated after the end of flowering, at véraison, and a non-defoliated control. Basic chemistry, carotenoids, polyphenols and free volatile analysis were conducted. Canopy mesoclimate, ultraviolet and photosynthetically active radiation, as well as berry temperature and radiation were monitored throughout the season using a range of sensors and light sensitive tapes.Sunburn damage was modulated by the specific meteorological conditions at each vineyard, and was higher at the warmest vineyard. Changes in grape composition were statistically significant between the different levels of sunburn damage, all of which could be clearly separated using MB-SO-PLS-LDA analysis. Among four different levels of damage studied, undamaged berries were the most distinct category and contained the highest levels of terpenes and lowest levels of polyphenols. As sunburn damage increased, an upregulation of compounds from the xanthophyll cycle was observed as well as of the flavonoids and flavan-3-ols, while a distinct destruction of chlorophyll a and b was also evident. Changes to concentrations of terpenes seemed to be mainly affected by temperature than radiation, and changes to specific aroma compounds such as the GLVs are reported for the first time. Comparison of defoliation treatments revealed that late defoliation led to a higher level and intensity of sunburn damage. Distinct biosynthetic mechanisms were apparent with regards to defoliation timing.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Joanna Gambetta, Leigh M. Schmidtke, Bruno Holzapfel

Charles Sturt University – Faculty of Science;  University of Adelaide, School of Agriculture, Food and Wine; South Australian Research and Development Institute, School of Agricultural and Wine Sciences, National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia, School of Agricultural and Wine Sciences, National Wine and Grape Industry Centre, New South Wales Department of Primary Industries, Wagga Wagga, NSW 2650, Australia

Contact the author

Keywords

sunburn, leaf removal, chardonnay, carotenoids, polyphenols, aroma compounds

Citation

Related articles…

Primary results on the characterisation of “terroir” in the certified denomination of origin Rioja (Spain)

La integración de variables referentes al clima, la litología y la morfología del relieve y el suelo en la D.O. Ca Rioja permite la configuración de un modelo a través de cuya validación se obtiene la delimitación de zonas vitícolas.

Application of GiESCO “bio-metaethics” charter in practice: the “direct” involvement of vine grower, winemaker, society

On the basis of a direct agreement between the GiESCO and the vine grower, the winemaker and the consumers (individual; company; public or private organizations), the communication on the content of the charter can be done as follows:
• Commitment to respect the basic rules of the GiESCO “BIO – MetaEthics” charter.
1/ Put Mankind in the depth of all concerns in a universal context: (grower, consumer, citizen, work valuing, education, security)
2/ Insure minimum impact on environment by optimizing cultivation technics: (maximum of natural biodegradable products, friendly practices, short channels, renewable energies, terroir sustainability)

Application of DEXI PM Vigne sustainability tool to the assessment of alternative vineyard protection strategies

Implementing alternative grapevine systems that incorporate sustainable strategies and innovative farming practices is essential. However, we lack tools for measuring the impact of these new practices on the overall sustainability of vineyards. DEXi PM Vigne (Gary et al., 2015) is a tool developed for ex ante assessment of the sustainability of grapevine cropping systems, from the plot to the farm scale. In the present study, we focused on implementing new strategies of integrated crop protection management with limited pesticide use in vineyards.

Managing local field variability in the framework of precision viticulture

Managing grapevines according to the practices of Precision Agriculture (PA), may prove to be an asset in the hands of the modern grape growers.

EVIDENCE OF THE INTERACTION OF ULTRASOUND AND ASPERGILLOPEPSINS I ON UNSTABLE GRAPE PROTEINS

Most of the effects of ultrasound (US) result from the collapse of bubbles due to cavitation. The shockwave produced is associated with shear forces, along with high localised temperatures and pressures. However, the high-speed stream, radical species formation, and heat generated during sonication may also affect the stability of some enzymes and proteins, depending on their chemical structure. Recently, Ce-lotti et al. (2021) reported the effects of US on protein stability in wines. To investigate this further, the effect of temperature (40°C and 70°C; 60s), sonication (20 kHz and 100 % amplitude, for 20s and 60s, leading to the same temperatures as above, respectively), in combination with Aspergillopepsins I (AP-I) supplementation (100 μg/L), was studied on unstable protein concentration (TLPs and chitinases) using HPLC with an UV–Vis detector in a TLPs-supplemented model system and in an unstable white wine.