Macrowine 2021
IVES 9 IVES Conference Series 9 Measuring elemental sulfur in grape juice in relation to varietal thiol formation in Sauvignon blanc wines.

Measuring elemental sulfur in grape juice in relation to varietal thiol formation in Sauvignon blanc wines.

Abstract

Aim: Sauvignon blanc displays a range of styles that can include prominent tropical and passionfruit aromas. Both sensory evaluation and chemical analysis have confirmed the above-average presence of ‘varietal thiols’ in the Sauvignon blanc wines from Marlborough, New Zealand.1 The varietal thiols are released from cleavage of non-volatile sulfur-containing precursors or an interaction between a sulfur donor and a C6-compound.2 Machine-harvesting is the most common harvesting practice used in New Zealand, by which, there is a higher probability to add some leaves to the must. Leaves and grapes can contain elemental sulfur (S0), which is commonly sprayed in the fields to protect berries against powdery mildew. S0 is known to cause unwanted reductive aromas, including H2S, in certain wines unless remediation steps are undertaken during winemaking. Also, it was shown that extra S0 addition to the crushed grapes could lead to more varietal thiol formation in wines.3 Despite the clear effects of residual S0 present in the must on the final wine quality and aroma4, its measurement is not a regular practice undertaken in wineries due to the lack of easy and applicable methods.

Methods: We have optimized a sulfide sensor for S0 measurement in grape juice samples and investigated the correlation between S0 concentration in grape juice and varietal thiols concentration in final wines. A simple apparatus was designed to reduce S0 to sulfide using dithiothreitol (under acidic conditions, as H2S), followed by an ion-selective electrode (ISE) to measure sulfide concentrations (under alkaline conditions as S2-). GC-MS is being used to analyze thiol concentrations in wine samples to allow comparisons to be made with juice S0 concentrations.

Results: The semi-log calibration curve plotted based on the ISE data showed very good linearity. The results also showed that the reduction process was successful, and the apparatus is working well with both standard and juice samples. The ISE was confirmed to be able to detect the reduced sulfur at concentrations as low as 0.01 ppm.

Conclusion

The methodology allows action between the concentration of S0 residues and the concentration of varietal thiols in the final wines to be investigated. The analysis is applicable in a winery setting to evaluate the potential of grape juices to form varietal thiols and/or reductive compounds in wines

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Bahareh Sarmadi

School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand,Paul A. Kilmartin, School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand Brandt P. Bastow, School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand

Contact the author

Keywords

Sauvignon blanc, elemental sulfur, varietal thiols

Citation

Related articles…

Riqualificazione dell’antica “Terra di Lavoro” attraverso il rilancio della cultivar Abbuoto

L’agricoltura dei territori costituenti l’antica “Terra di Lavoro”, territorio che oggi è compreso nella provincia di Caserta ed in parte di quelle di Frosinone e Latina, ha subito a partire dal 1970

OENOLOGICAL STRATEGIES FOR THE REMOVAL OF PINKING IN WHITE WINE

The pinking of in white wine is the turning of color from yellow to salmon hue. White wines obtained from certain grape varieties (e.g. Chardonnay, Sauvignon blanc, Riesling, Trebbiano di Lugana) showed to be susceptible to pinking [1] that has been evaluated by an assay providing the addition of hydrogen peroxide. Even if its appearance does not seem to affect the sensory properties [2], strategies are necessary for its removal. Nowadays, the treatment with polyvinylpolipirroline (PVPP) was reported to significantly decrease the pink color [3].

The legal concept of “cultural heritage” to refurbish the wine sector’s priorities

Following the latest oiv global report (april 26, 2024), the prevailing perception of wine consumption finds itself undergoing one of its most challenging adjustments. It’s plausible to anticipate a shift in the scope of pdo wines towards more human-centered products (wells and stiefel, 2019), necessitating the entire sector to adapt strategies to public interest patterns (touzeau, 2010: 17-31). Previously, a dominant notion of cultural property underscored the value of wine regions; the primary interest revolved around estate owners and retailers, along with vigneron tales.

Modulating role of SO2 in white wine protein haze formation

Despite the extensive research performed during the last decades, the multifactorial mechanism responsible for the white wine protein haze formation is not fully characterized. Herein, a new model is proposed, which is based on the experimental identification of sulfur dioxide as a major modulating factor inducing wine protein haze upon heating. As opposed to other reducing agents, such as 2-mercaptoethanol, dithiothreitol and tris(2-carboxyethyl)phosphine hydrochloride (TCEP), the addition of SO2 to must/wine upon heating cleaves intraprotein disulfide bonds, hinders thiol-disulfide exchange during protein interactions and can lead to the formation of novel inter/intraprotein disulfide bonds. Those are eventually responsible for wine protein aggregation which follows a nucleation-growth kinetic model as shown by dynamic light scattering [1].

Interaction between the enzymes of central carbon metabolism and anthocyanin biosynthesis during grape berry development

Primary and secondary metabolites are major components of grape quality and wine typicity. Their accumulation is interconnected through a complex metabolic network, which is still not well understood. This study aims to investigate how the enzymes of central carbon metabolism interact with anthocyanin biosynthesis during grape berry development: does the accumulation of anthocyanins, which represents a non-negligible diversion of carbon metabolic fluxes, require reprogramming of central enzymes or is it controlled downstream of central metabolism? To this end, 23 enzymes involved in central carbon metabolism pathways have been analyzed in the berries of 3 grape cultivars, which have close genetic background but distinct temporal dynamics of anthocyanin accumulation.