Macrowine 2021
IVES 9 IVES Conference Series 9 Phytosterols and ergosterol role during wine alcoholic fermentation for 27 Saccharomyces cerevisiae strains

Phytosterols and ergosterol role during wine alcoholic fermentation for 27 Saccharomyces cerevisiae strains

Abstract

Sterols are a class of the eukaryotic lipidome that is essential for the maintenance of the cell membrane integrity and their good functionality (Daum et al., 1998). During alcoholic fermentation, they ensure yeast growth, metabolism and viability, as well as resistance to osmotic stress and ethanol inhibition (Mannazzu et al., 2008). Musts clarified in excess lead to the loss of solid particles rich in sterols, resulting in sluggish and stuck fermentations (Casalta et al., 2013). Two sterol sources can support yeasts to adapt to fermentation stress conditions: ergosterol, produced by yeast in aerobic conditions, and phytosterols, plant sterols found in grape musts imported by yeasts in the absence of oxygen (Nes, 1987). Little is known about the physiological impact of the assimilation of phytosterols in comparison to ergosterol and the influence of sterol nature on fermentation kinetics parameters. Moreover, studies done until today analyzed a limited number of yeasts strains. For this reason, the aim of this work is to compare the fermentation performances of 27 Saccharomyces cerevisiae strains with phytosterols and ergosterol on two conditions: sterol stress (sterol starvation) and osmotic stress (the most common stress during fermentation due to high concentrations of sugars).Experiments were performed in 300 mL fermenters without oxygen. Fermentation kinetics were monitored continuously through CO2 production in order to obtain parameters, such as the maximum fermentation rate (Vmax) or total CO2 production. Cell count and cell viability were measured around 80% of fermentation progress. Central carbon metabolism (CCM) metabolites (acetate, glycerol, succinate and residual sugars) were quantified at the end of fermentation.Principal Component Analysis with biological, kinetic and CCM variables revealed the huge phenotype diversity of strains in this study. Analysis of variance (ANOVA) indicated that both the strain and the nature of sterol explained the differences on yeast performances in fermentation. It should be noted that cellular viability is a key parameter in both sterol and osmotic stress. Indeed, strains with a high viability at the end of the fermentation finished fermenting earlier. Finally, ergosterol allowed a better completion of fermentation in both stress conditions tested.These results highlighted the role of sterols in wine alcoholic fermentation to ensure yeast growth and avoid sluggish or stuck fermentations. Interestingly, sterol nature affected yeast viability, biomass, kinetics parameters and biosynthesis of CCM metabolites

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Giovana Girardi Piva 

SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France,Jean-Roch MOURET (SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France)  Virginie GALEOTE (SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France) Jean-Luc LEGRAS (SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France) Erick CASALTA (SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France) Anne ORTIZ-JULIEN (Lallemand SAS, Blagnac, France)

Contact the author

Keywords

wine yeast, sterol starvation, osmotic stress, yeast membrane, alcoholic fermentation

Citation

Related articles…

Investigation on the potentiality of a biostimulant by Fabaceae tissues and rich in triacontanol to enhance grapevine resilience under drought stress

The primary objective of this research was to investigate the potential benefits of a Fabaceae-based product rich in triacontanol (a long-chain alcohol) applied to Vitis vinifera cv. Merlot, on key physiological and productive parameters of grapevines under controlled water stress conditions.

Physiological response of new cultivars resistant to fungi confronted to drought in a semi-arid Mediterranean area

Water is one of the most limiting factors for viticulture in Mediterranean regions. Former researches showed that water shortage hampers both vegetative and reproductive developments. INRA is running programs to breed varieties carrying QTL of tolerance to major fungi, i.e. powdery and downy mildews. Some varieties have been already certified or are close to be certified. However, little is known about the response of these varieties to water deficit, which behavior is critical for their development. This study characterized physiological responses of 4 new varieties to water deficit and described relationship between them.

Innovative strategies for reducing astringency in Mandilaria wines 

Mandilaria, a red grape variety indigenous to the Aegean islands, is well known for its robust tannins and pronounced astringency, which can challenge the palatability and marketability of its wines. The aim of this study was the reduction of astringency in wines made exclusively from mandilaria grapes through dehydrations practices and targeted winery applications.

Oxidation vs reduction: the fate of tannins, pigments, vscs, color,SO2 and metabolomic fingerprint

The management of oxygen during winemaking and aging is a big issue in order to achieve high quality wines. The correct amount of O2 improves aroma, astringency, bitterness and color, however an excess of oxygen promotes the appearance of yellow

Impact of Japanese beetles (Popillia japonica Newman) on the chemical composition of two grape varieties grown in Italy (Nebbiolo and Erbaluce)

The Japanese beetle, Popillia japonica Newman, is considered one of the most harmful organisms due to its ability to feed on more than 300 plant species. Symptoms indicative of adult beetles include feeding holes in host plants extending to skeletonization of leaves when population numbers are high. The vine is one of the species most affected by this beetle. However, the damaged plants, even if with difficulty, manage to recover, bringing the bunches of grapes to ripeness.