Macrowine 2021
IVES 9 IVES Conference Series 9 Phytosterols and ergosterol role during wine alcoholic fermentation for 27 Saccharomyces cerevisiae strains

Phytosterols and ergosterol role during wine alcoholic fermentation for 27 Saccharomyces cerevisiae strains

Abstract

Sterols are a class of the eukaryotic lipidome that is essential for the maintenance of the cell membrane integrity and their good functionality (Daum et al., 1998). During alcoholic fermentation, they ensure yeast growth, metabolism and viability, as well as resistance to osmotic stress and ethanol inhibition (Mannazzu et al., 2008). Musts clarified in excess lead to the loss of solid particles rich in sterols, resulting in sluggish and stuck fermentations (Casalta et al., 2013). Two sterol sources can support yeasts to adapt to fermentation stress conditions: ergosterol, produced by yeast in aerobic conditions, and phytosterols, plant sterols found in grape musts imported by yeasts in the absence of oxygen (Nes, 1987). Little is known about the physiological impact of the assimilation of phytosterols in comparison to ergosterol and the influence of sterol nature on fermentation kinetics parameters. Moreover, studies done until today analyzed a limited number of yeasts strains. For this reason, the aim of this work is to compare the fermentation performances of 27 Saccharomyces cerevisiae strains with phytosterols and ergosterol on two conditions: sterol stress (sterol starvation) and osmotic stress (the most common stress during fermentation due to high concentrations of sugars).Experiments were performed in 300 mL fermenters without oxygen. Fermentation kinetics were monitored continuously through CO2 production in order to obtain parameters, such as the maximum fermentation rate (Vmax) or total CO2 production. Cell count and cell viability were measured around 80% of fermentation progress. Central carbon metabolism (CCM) metabolites (acetate, glycerol, succinate and residual sugars) were quantified at the end of fermentation.Principal Component Analysis with biological, kinetic and CCM variables revealed the huge phenotype diversity of strains in this study. Analysis of variance (ANOVA) indicated that both the strain and the nature of sterol explained the differences on yeast performances in fermentation. It should be noted that cellular viability is a key parameter in both sterol and osmotic stress. Indeed, strains with a high viability at the end of the fermentation finished fermenting earlier. Finally, ergosterol allowed a better completion of fermentation in both stress conditions tested.These results highlighted the role of sterols in wine alcoholic fermentation to ensure yeast growth and avoid sluggish or stuck fermentations. Interestingly, sterol nature affected yeast viability, biomass, kinetics parameters and biosynthesis of CCM metabolites

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Giovana Girardi Piva 

SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France,Jean-Roch MOURET (SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France)  Virginie GALEOTE (SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France) Jean-Luc LEGRAS (SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France) Erick CASALTA (SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France) Anne ORTIZ-JULIEN (Lallemand SAS, Blagnac, France)

Contact the author

Keywords

wine yeast, sterol starvation, osmotic stress, yeast membrane, alcoholic fermentation

Citation

Related articles…

Microbial life in the grapevine: what can we expect from the leaf microbiome?

The above-ground parts of plants, which constitute the phyllosphere, have long been considered devoid of bacteria and fungi, at least in their internal tissues and microbial presence there was long considered a sign of disease. However, recent studies have shown that plants harbour complex bacterial communities, the so-called “microbiome”[1]. We are only beginning to unravel the origin of these bacterial plant inhabitants, their community structure and their roles, which in analogy to the gut microbiome, are likely to be of essential nature. Among their multifaceted metabolic possibilities, bacteria have been recently demonstrated to emit a wide range of volatile organic compounds (VOCs), which can greatly impact the growth and development of both the plant and its disease-causing agents.

ReGenWine: A transdisciplinary project to assess concepts in regenerative viticulture

Regenerative agriculture is a set of agricultural practices that focus on improving the health of the soil, increasing biodiversity, and enhancing ecosystem services.

Characterization and biological effects of extracts from winery by-products

Pomace, stem, grapevine leaves, and vine shoots arise as so called winery by-products during the wine production process.

Settling precocity and growth kinetics of the primary leaf area: two indicative parameters of grapevine behaviour

Le comportement de la vigne en terme de fonctionnement thermique et hydrique, influe de manière directe sur la qualité des baies de raisin. L’effet du terroir peut être perçu à travers l’étude de paramètres tels que la précocité, la mise en place de la surface foliaire ou la vigueur. Une expérimentation a été conduite en Val de Loire sur le cépage chenin dans le but de mieux comprendre le rôle des variables liées au terroir sur la croissance et le développement de la vigne et in fine sur la qualité des baies.

Circular economy strategies to reintegrate grape pomace from cv. Lagrein into the food chain

The project REALISM (regionality and circular economy in food products to counteract the Metabolic Syndrome (M.S.)) was initiated to develop antioxidant-rich food products with the ability to reduce the risk of developing the M.S.