Macrowine 2021
IVES 9 IVES Conference Series 9 Evaluation of intrinsic grape berry and cluster traits for postharvest withering kinetics prediction

Evaluation of intrinsic grape berry and cluster traits for postharvest withering kinetics prediction

Abstract

To make some particular wine styles (e.g., Amarone), grapes are harvested and stored in dehydrating rooms before vinification, in a process called withering. This practice increases the concentration of sugars and other solutes and encourages the accumulation of unique aroma compounds in berries. Previous investigations evidenced that the kinetics of grape dehydration highly affects the quality of the produced wine. Along with the well-known effects of the environmental conditions, the cluster and berry morphology have an important role in the determination of the grape water loss rate. However, the relative contribution of each cluster/berry physical trait to the dehydration rate and the possibility to predict the latter parameter in advance, are poorly studied aspects. The aim of this work was to investigate the effect of several grape physical/morphological parameters on the withering kinetic rate, individuating potential predictors of the grapes behavior during postharvest dehydration. Four red wine grape cultivars, Corvina, Corvinone, Cabernet-Sauvignon and Cavrara, were harvested at commercial ripening and their cluster compactness, berry surface area to volume ratio, skin thickness and skin waxes quantity were measured. Furthermore, a novel rapid dehydration test in a controlled forcing environment (50 °C; 400 mbar; 24 h) was applied on grape clusters to assess their intrinsic tendency to lose water. The grapes were then withered for 77 days, under controlled environmental conditions simulating the commercial process, and the dehydration kinetic rates were obtained. Multivariate and correlation analyses were employed to search and score the relation between each measured parameter and the withering kinetic rate. The parameters which were pointed out as good predictors of the grapes water loss attitude were the skin thickness, berry surface area to volume ratio and cluster compactness. However, intra-cultivar analyses performed on Corvina and Corvinone separately have not identified parameters with significant correlations to the withering kinetic rate, likely because of the very low variability observed among accessions of the same cultivar.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Ron Shmuleviz 

Department of Biotechnology, University of Verona, Via della Pieve 70, 37029 – San Floriano, San Pietro in Cariano – VR, Italy., Giovanni Battista TORNIELLI, Department of Biotechnology, University of Verona, Via della Pieve 70, 37029 – San Floriano, San Pietro in Cariano – VR, Italy.

Contact the author

Keywords

wine grapes, dehydration kinetics, withering, fruit morphology, amarone

Citation

Related articles…

Biodiversity in the vineyard agroecosystem: exploring systemic approaches

Biodiversity conservation and restoration are essential for guarantee the provision of ecosystem services associated to vineyard agroecosystem such as climate regulation trough carbon sequestration and control of pests and diseases. Most of published research dealing with the complexity of the vineyard agroecosystems emphasizes the necessity of innovative approaches, including the integration of information at different temporal and spatial scales and development of systemic analysis based on modelling. A biodiversity survey was conducted in the Franciacorta wine-growing area (Lombardy, Italy), one of the most important Italian wine-growing regions for sparkling wine production, considering a portion of the territory of 112 ha. The area was divided into several Environmental Units (EUs), defined as a whole vineyard or portion of vineyard homogenous in terms of four agronomic characteristics: planting year, planting density, cultivar, and training system. In each EU a set of compartments was identified and characterised by specific variables. The compartments are meteorology, morphology (altitude, slope, aspect, row orientation, and solar irradiance), ecological infrastructures and management. The landscape surrounding EU was also characterised in terms of land-use in a buffer zone of 500 m. For each component a specific methodology was identified and applied. Different statistical approaches were used to evaluate the method to integrate the information related to different compartments within the EU and related to the buffer zone. These approaches were also preliminarily evaluated for their ability to describe the contribution of biodiversity and landscape components to ecosystem services. This methodological exploration provides useful indication for the development of a fully systemic approach to structural and functional biodiversity in vineyard agroecosystems, contributing to promote a multifunctional perspective for the all wine-growing sector.

Uvalino wine: chemical and sensory profile

The evaluation of different chemical compounds present in Uvalino wines was correlated with sensory analysis. The analysis showed a high content of polyphenolic compounds responsible for the organoleptic properties of wine, including color, astringency and bitterness.

Influence of viticulture on the temporary evolution of the landscape: the case of the AO Ribera del Duero (Central Spain)

The European Landscape Convention (ELC, 2001) defined the landscape as the “part of a
territory as perceived by the population and resulting from the action of natural and/or human factors and their interrelationships”. Wine landscapes, protected or not under figures such as cultural landscapes or Cultural heritage, are a clear demonstration of this definition, denoting the interrelationships of the natural
environment and the action of the human, which modulates the territory to give the different wine
landscapes. This work was focused on the study of the effect of the human factors linked to the cultivation of the vine on the modification of the landscape.

Traditional agroforestry vineyards, sources of inspiration for the agroecological transition of viticulture

A unique “terroir” can be found in southern Bolivia, which combines the specific features of climate, topography and altitude of high valleys, with the management of grapevines staked on trees. It is one of the rare remnants of agroforestry viticulture. A survey was carried out among 29 grapegrowers in three valleys, to characterize the structure and management of these vineyards, and identify the services they expect from trees. Farms were small (2.2 ha on average) and 85% of vineyards were less than 1 ha. Viticulture was associated with vegetable, fruit and fodder production, sometimes in the same fields. Molle trees were found in all plots, together with one or two other native tree species. Traditional grapevine varieties such as Negra Criolla, Moscatel de Alejandría and Vicchoqueña were grown with a large range of densities from 1550 to 9500 vines ha-1. From 18 to 30% of them were staked on trees, with 1.2 to 4.9 vines per tree. The management of these vineyards (irrigation, fertilization and grapevine protection) was described, the most particular technical operation being the coordinated pruning of trees and grapevines. Three types of management could be identified in the three valleys. Grapegrowers had a clear idea of the ecosystem services they expected from trees in their vineyards. The main one was protection against climate hazards (hail, frost, flood). Then they expected benefits in terms of pest and disease control, improvement of soil fertility and resulting yield. At last, some producers claimed that tree-staking was quicker and cheaper than conventional trellising. It can be hypothesized then that agroforestry is a promising technique for the agroecological transition of viticulture. Its contribution to the “terroir” of the high valleys of southern Bolivia and its link with the specificities of the wines and spirits produced there remain to be explored.

NEW INSIGHTS INTO THE EFFECT OF TORULASPORA DELBRUECKII/SACCHAROMYCES CEREVISIAE INOCULATION STRATEGY ON MALOLACTIC FERMENTATION PERFORMANCE

Winemaking is influenced by micro-organisms, which are largely responsible for the quality of the product. In this context, Non-Saccharomyces and Saccharomyces species are of great importance not only because it influences the development of alcoholic fermentation (AF) but also on the achievement of malolactic fermentation (MLF). Among these yeasts, Torulaspora delbrueckii allows in sequential inoculation with strains of S. cerevisiae shorter MLF realizations [5] . Little information is available on the temporal effect of the presence of T. delbrueckii on (i) the evolution of AF and (ii) the MLF performance.