Macrowine 2021
IVES 9 IVES Conference Series 9 Chemical and sensory diversity of regional Cabernet-Sauvignon wines

Chemical and sensory diversity of regional Cabernet-Sauvignon wines

Abstract

AIM: To investigate chemical and sensory drivers of regional typicity of Cabernet Sauvignon from different geographical regions of Australia.

METHODS: Commercial Cabernet wines (n = 52) from Coonawarra, Margaret River, and Yarra Valley Geographical Indications of Australia, and from Bordeaux, France, were selected for extensive chemical and sensory analysis.1 A range of analytical methods were optimised to quantify a comprehensive array of volatile compounds (> 70) originating from different sources, including grape, fermentation, oak maturation, and ageing. Along with basic chemical data, measurement of non-volatile compounds such as tannins and other secondary metabolites and elements was also undertaken. Multivariate statistical analysis using partial least squares regression was applied to the combined chemical data and the sensory analysis ratings obtained through a trained descriptive analysis panel of the same wines, to determine important compounds driving relevant sensory attributes.

RESULTS: The compound 1,4-cineole, described as ‘mint’ and ‘bay leaf’, was partly responsible for separation of the Cabernet Sauvignon wines from the Australian regions, particularly from Margaret River, whereas compounds such as 4-ethylphenol and 4-ethylguaiacol were linked to the aromas of ‘earthy’ and ‘yeasty’, which drove some of the separation of Bordeaux wines from the others. Varietal thiol, 3-mercapto-1-hexanol, which is mainly associated with Sauvignon Blanc and other white wine varieties, was measured in concentrations above its aroma detection threshold in all of the wines analysed, with similar concentrations present in Bordeaux and Coonawarra wines, and significantly higher concentrations in Margaret River and Yarra Valley wines. Additionally, non-volatiles such as particular elements drove some the separation between the regions; for example strontium was present in highest concentration in the Coonawarra wines and was found at lowest concentration in the Bordeaux wines. Free anthocyanins were also found to differ between Coonawarra and Bordeaux regions, with higher concentration being measured in the latter.

CONCLUSION

In determining the influential drivers of sensory properties of regional Cabernet Sauvignon wines, this study has uncovered various volatile and non-volatile constituents that are associated with specific sensory attributes. This is an important step in being able to define and subsequently help preserve the distinctive characters associated with regional Cabernet Sauvignon wines.

 

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Dimitra L. Capone 

Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide,Paul BOSS, CSIRO, and Australian Research Council Training Centre for Innovative Wine Production  Lira SOUZA GONZAGA, Australian Research Council Training Centre for Innovative Wine Production, and The University of Adelaide  Susan E. P. BASTIAN, Australian Research Council Training Centre for Innovative Wine Production, and The University of Adelaide Ruchira RANAWEERA, Department of Wine Science, The University of Adelaide David W. JEFFERY, Australian Research Council Training Centre for Innovative Wine Production, and The University of Adelaide

Contact the author

Keywords

volatile compound, non-volatile compound, sensory analysis, partial least squares regression, regionality, terroir

Citation

Related articles…

The impact of postharvest cooling of Sauvignon blanc grapes on the sensory profile and the chemical composition of the wines

Rapid processing of grapes after harvest has always been considered essential for achieving a balanced sensory wine profile.

Simulating berry sunburn in virtual vineyards

Context and purpose of the study. Berry sunburn in vineyards is a recurring disorder that can cause severe yield loss. As sunburn observations are often associated with heat waves, a link to climate change is likely.

The modification of cultural practices in grapevine cv. Syrah, does it modify the characteristics of the musts?

The work shows the results of a year of experimentation (2020) in a Syrah variety vineyard in La Roda (Castilla-La Mancha, Spain). The trial approach was on a randomized block design with two factors: Irrigation (I) and Pruning (P).
Irrigation schedules were adjusted to apply amounts close to 1,500 m3/ha. With this provision, 2 different irrigation treatments were proposed: I1) Start of irrigation from pea-sized grape to post-harvest (providing at least 20 % of the total amount of irrigation water to be provided post-harvest); I2) Start of irrigation from pea-sized grape to harvest (usual irrigation practice in the study area). Pruning was proposed with two treatments, one at the end of January (P1), which is pruning on a conventional date; and P2) pruning carried out at the beginning of budding. In total, 4 repetitions were designed with 4 elementary plots, each one of them representing one of the proposed treatments (I1P1; I1P2; I2P1; I2P2). In total, 16 plots were worked on and each elementary plot consisted of 30 strains, distributed in 3 lines.
The productive response was evaluated with the yield results of the harvest harvested at 23 ºBrix. The qualitative response was measured in the musts through the indices of technological (acidity, pH and potassium) and phenolic maturity and aromatic compounds in free and glycosylated fractions. The treatments tested had, in general, an effect on the different variables analyzed.

Baccus: from framework to web platform for self-assessment of wine sustainability

Sustainability is becoming an increasingly present challenge, whether due to an increase in the level of perception and demand from consumers and stakeholders or the rise of events linked to climate change, which directly impacts agricultural-based sectors such as the vine and wine industry.

Can grapevine tolerance to bunch rot be directly induced by groundcover management?

Botrytis bunch rot occurrence is the most important limitation for the wine industry in humid environments. The effect of grapevine vegetative growth on bunch rot expression results from direct effects (cluster architecture, nitrogen status among others) and indirect ones (via microclimate). Previous studies of our group showed strong differences in bunch rot incidence between floor management treatments: cover crop (CC) vs weed-free strips under the trellis with herbicide (H). We observed that in some circumstances this reduction in bunch rot incidence occurred without major vine growth differences among treatments. The aim of the present study was to test the general hypothesis that other factors unrelated to grapevine vegetative expression could be more relevant to grapevine susceptibility to bunch rot.