Macrowine 2021
IVES 9 IVES Conference Series 9 Evaluation of Saccharomyces cerevisiae strains from honey by-products by their performance as starters in the wine industry

Evaluation of Saccharomyces cerevisiae strains from honey by-products by their performance as starters in the wine industry

Abstract

AIM: Recent studies on yeast ecology of non-oenological niches have highlighted the ability of some Saccharomyces cerevisiae yeasts to ferment grape must [1]. Considering that the market for sparkling wines is highly competitive in terms of aromatic complexity, a technological selection of S. cerevisiae strains isolated from high-sugar matrices (honey and honey by-products) was carried out. Strains with high oenological performance were used as starter cultures on an industrial scale for the production of base wines for sparkling wine production.

METHODS: All S. cerevisiae isolates were subjected to genotypic identification (RFLP and sequencing of the D1/D2 region of the 26S rRNA gene) [2] and strain typing by interdelta analysis [3]. Characterized strains were subjected to in vitro technology screening (H2S production, resistance to different concentrations of ethanol and potassium metabisulfite, capacity to grow at 10° and 15° and at pH 2.5, 2.8 and 3) [4]. In order to determine the fermentation power and fermentation vigor, the strains with the optimal in vitro performance were subjected to micro-fermentation tests in grape must. The selected yeasts were used to ferment a must for the production of base wine and the products was subjected to sensory analysis.

RESULTS: Genotypic analysis conducted on 552 isolates identified the yeasts as S. cerevisiae. Strain typing allowed the characterize of 98 strains. In relation to technology screening results, 4 strains (SPF21, SPF42, SPF52 and SPF159) have been successfully used as starter cultures for the production of base wines at industrial level. Sensorial analysis done on different wines showed the absence of unpleasant odors and/or flavours and it was observed a significant increase of aromatic complexity and intensity. 

CONCLUSIONS

Saccharomyces cerevisiae strains have shown a high fermentative capacity and represent a valid alternative for the improvement of the sensory characteristics of the final product. The microbial ecology of honey and its by-products is rich in Saccharomyces spp. with high fermentative capacity and potentially applicable in alcoholic fermentation. The use of unconventional yeasts, could be a valid alternative to characterize the base wine and improve the typicality of the sparkling wines in order to satisfy the demand of the consumers.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Nicola Francesca

Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy,Michele, MATRAXIA, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Rosario, PRESTIANNI, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Valentina, CRAPARO,  Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Vincenzo, NASELLI, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Giancarlo, MOSCHETTI, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Luca, SETTANNI, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Raimondo, GAGLIO, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy.  Antonella, MAGGIO, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Parco d’Orleans II, Palermo, building 17, Italy  Nicola, FRANCESCA, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Antonio, ALFONZO, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy

Contact the author

Keywords

honey by-products; Saccharomyces cerevisiae; alcoholic fermentation; sensory analysis

Citation

Related articles…

Study of fungal and bacterial laccases for the reduction of ochratoxin A content in model wine

Ochratoxin A (OTA) is a mycotoxin produced by several filamentous fungi infecting grape bunches (Penicillium and Aspergillus spp.), this toxin pass to must when grapes are crushed and later it is found in wine. Following the evaluations of the toxicity of OTA, European Commission Regulations have been promulgated introducing upper limits for OTA concentrations in various commodities (cereals, cereal products, dried vine fruit, coffee, wine, grape juice, baby foods and dietary foods for special medical purposes).

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.

Sustainable yield management through fruitfulness and bunch architecture manipulation

Vineyards are highly variable and this variation is largely driven by environmental conditions and seasonal variation. For example, warm temperatures

From vine to wine : a multi-trait experiment for increasing the varietal diversity in the bordeaux wine region. How to adapt to climate change without damaging terroir expression?

Context and purpose of the study climate change is impacting wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir. Replacing some of the plant material can be an efficient lever for adapting to climate change. However, the change of cultivars also raises questions about the region’s wine typicity. This study, based on seven years of data, investigates the potential adaptability of over 50 different varieties in the bordeaux wine region.

Relationship between soil and grapevine variety in the wineyard of Jura: example for the “Trousseau” variety from the “Terroir” of Montigny-Lès-Arsures (France)

Seven plots located in the commune of Montigny-lès-Arsures (Jura, 39), planted with grapevine varieties Trousseau and Savagnin, were chosen for a study of soil pits and a distribution of major and trace chemical elements in soils and wines. It was shown that the mineral matrix of the soil reflects the geological substratum and the sub-surface alteration process, while the organic soil matrix depends on agro-viticultural practices.