Macrowine 2021
IVES 9 IVES Conference Series 9 Microwaves, an auxiliary tool to improve red wine quality in warm climates

Microwaves, an auxiliary tool to improve red wine quality in warm climates

Abstract

AIM Current winery efforts in Spanish warm climate regions, as Andalusia, are aimed at red wine production in spite of sub-optimal climatological conditions. This climate, characterized by high temperatures and sunlight, result in fast and heterogeneous ripening and, as a consequence, a lower polyphenolic concentration is detected in some grape varieties, thus leading to poor colour stability and intensity [1] compared to those achieved in colder regions. Polyphenolic compounds in red winemaking, strongly related to wine color and mouth feelings, are normally extracted in the maceration step during the fermentation process, thus phenolic content in red wines highly depends on the applied winemaking process. For this reason, several winemaking techniques have been assayed to improve color extraction allowing to obtain products with market demanding characteristics [2]. On the other hand, microwave-assisted extraction (MAE) is a technique that enhances the extraction yield of organic compounds submitted to microwaves (attributed to the dipolar rotation of molecules and heating generated in the solvent caused by this electromagnetic radiation) with low instrumental requirements [3]. The aim of this study was to assess the effect of microwaves on color characteristics of wines of Garnacha variety (Vitis vinifera L.) cultivated in a warm climate zone.

METHODS Microwave-assisted extraction was applied at the beginning of alcoholic fermentation of red wines from Garnacha grapes (grown in a warm climate zone) to enhance wine color versus conventional winemaking. Enological and color parameters were analyzed and compared along winemaking processes during vinification and bottled aging.

RESULTS Significant enhancement was found for microwave submitted wines in color intensity, CIELAB coordinates, and hue at each step of the process when compared to the control wine, including the content of different phenolic compounds. 

CONCLUSIONS: This practice seems a feasible alternative to improve quality characteristics of young red wines from grapes grown in warm climates with color difficulties.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Zulema Piñeiro 

IFAPA- o Gutiérrez-Escobar, IFAPA-  -Mª José Aliaño-González, IFAPA -Mª Isabel Fernández-Marín, IFAPA-Centro Rancho de la Merced, Carretera Cañada de la Loba (CA-3102) PK 3.1, 11471, Jerez de la Frontera, Spain., Centro Rancho de la Merced, Carretera Cañada de la Loba (CA-3102) PK 3.1, 11471, Jerez de la Frontera, Spain.  Centro Rancho de la Merced, Carretera Cañada de la Loba (CA-3102) PK 3.1, 11471, Jerez de la Frontera, Spain, Centro Rancho de la Merced, Carretera Cañada de la Loba (CA-3102) PK 3.1, 11471, Jerez de la Frontera, Spain

Contact the author

Keywords

microwaves, grape, red wine, color, hue, warm climate

Citation

Related articles…

Hidden costs of wine: quantifying environmental externalities of organic and integrated management

Agriculture is one of the largest contributors to environmental pollution and causing significant impacts on human health, ecosystems, and resource availability.

Metabolomics of grape polyphenols as a consequence of post-harvest drying: on-plant dehydration vs warehouse withering

A method of suspect screening analysis to study grape metabolomics, was developed [1]. By performing ultra-high performance liquid chromatography (UHPLC) – high-resolution mass spectrometry (HRMS) analysis of the grape extract, averaging 320-450 putative grape compounds are identified which include mainly polyphenols. Identification of metabolites is performed by a new HRMS-database of putative grape and wine compounds expressly constructed (GrapeMetabolomics) which currently includes around 1,100 entries.

Caratterizzazione delle produzioni vitivinicole dell’ area del Barolo: un’esperienza pluridisciplinare triennale (1)

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

Impact of glutathione-rich inactivated yeast on wine chemical diversity

Glutathione-rich inactivated dry yeasts (GSH-IDY) are claimed to accumulate intracellularly and then release glutathione in the must.

Influence of inactive dry yeast treatments during grape ripening on postharvest berry skin texture parameters and phenolic compounds extractability

Inactive dry yeast treatments in the vineyard are a tool used with the aim to improve the concentration and quality of secondary metabolites in grapes, leading to a better differentiation of the wines made from grapes differently treated. In this work, a foliar spraying treatment with yeast derivatives specifically designed to be used with the patent pending application technology of Lallemand Inc. Canada (LalVigne® Mature, Lallemand Inc., Montreal, Canada) was tested on Vitis vinifera L. cv. Barbera and Nebbiolo black winegrapes. The aim was to evaluate the effect of this treatment on the phenolic compounds accumulation, the skin physical-mechanical properties and the related phenolic extractability. Prior to analysis, the berries were sorted by flotation in order to evaluate their distribution by density class, and to determine the skin texture parameters of berries with different sugar contents, thus understanding also the ripening effect.