Macrowine 2021
IVES 9 IVES Conference Series 9 Yeast interactions in chardonnay wine fermentation: impact of different yeast species using ultra high resolution mass spectrometry

Yeast interactions in chardonnay wine fermentation: impact of different yeast species using ultra high resolution mass spectrometry

Abstract

AIM: During alcoholic fermentation, when yeasts grow simultaneously, they often do not coexist passively and in most cases interact with each others [1]. They interact by roducing unpredictable compounds an fermentation products that can affect the chemical composition of the wine and therfore alter its aromatic and sensory profile [1, 2].

METHODS: Chardonnay must inoculated with non-Saccharomyces yeasts including Lachancea thermotolerans, Starmerella bacillaris, Metschnikowia pulcherrima and later with Saccharomyces cerevisiae for sequential fermentation screened for metabolite composition using ultra high resolution mass spectrometry [3].

RESULTS: We show that tremendous differencces exist between yeasts in terms of metabolites production and we could clearly differentiate wines according to the yeast strain used [3]. It appears that single cultures could be easily discriminated from sequential cultures based on their metabolite profile. Biomarkers, which reflect important differences between wines from single or mixed culture fermentation, were extracted and annotated to characterized yeast species impact on wine final composition. New metabolites appeared in wines from sequential fermentation and some others metabolites are not detected anymore compared to single cultures. Our data are consistent with the existence of positive or negative interactions between yeast species.

CONCLUSIONS

The wine composition from sequential culture is not only the addition of metabolites from each species but is the result of complex interactions suggesting that interactions between yeasts are not neutral. The level of metabolites represents integrative information to better understand the microbial interactome in order to control the fermentation by multi-starters.

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Chloé Roullier-Gall

Université de Bourgogne, IUVV, Jules Guyot, Dijon, France,- V. David; Université de Bourgogne, IUVV, Jules Guyot, Dijon, France – F. Bordet; Université de Bourgogne, IUVV, Jules Guyot, Dijon, France – P. Schmitt-Kopplin ; Technische Universität München, Freising, Germany & Helmholtz Zentrum München, Neuherberg, Germany – H. Alexandre; Université de Bourgogne, IUVV, Jules Guyot, Dijon, France

Contact the author

Keywords

metabolomics, yeast, interaction, ft-icr-ms, chardonnay

Citation

Related articles…

Ripening of Mencía grape cultivar in different edaphoclimatic situations (D.O. Ribeira Sacra, Spain)

Ribeira Sacra is a Spanish Denominación de Origen (D.O.) for wines, located in Galicia, NW Spain.

Extreme vintages affect grape varieties differently: a case study from a cool climate wine region

Eger wine region is located on the northern border of grapevine cultivation zone. In the cool climate, terroir selection is one of the foundations of quality wine making. However, climate change will have a significant impact on these high value-added vineyards. This study presents a case study from 2021 and 2022 with the investigation of three grape varieties (Kadarka, Syrah, Furmint). The experiment was conducted in a steep-sloped vineyard (Nagy-Eged hill) with a southern exposure.

Water deficit differentially impacts the performances and the accumulation of grape metabolites of new varieties tolerant to fungi

The use of resistant varieties is a long-term but promising solution to reduce chemical input in viticulture. Several important breeding programs in Europe and abroad are now releasing a range of new hybrids performing well regarding fungi susceptibility and producing good quality wines. Unfortunately, insufficient attention is paid by the breeders to the adaptation of these varieties to climatic changes, notably to the increased climatic demand and water deficit (WD). Thus, prior to the adoption of such varieties by the wine industry in Mediterranean regions, there is a need to consider their suitability to WD. This study aimed to characterize the different drought-strategies adopted by 6 new resistant varieties selected by INRAE in comparison to Syrah. To allow the assessment of long-term impacts of WD, field-grown vines were exposed to contrasted WD from 2018 to 2021 under a semi-arid Mediterranean climate. A gradient of WD was applied in the field and controlled through plant measurements at the single plant level. Grape development was non-destructively monitored to determine the arrest of berry phloem unloading. The impacts of WD on berry composition, including water, primary metabolites (sugars, organic acids), secondary metabolites (anthocyanins, thiols precursors) and main cations contents, were assessed at this specific stage. Results showed different varietal responses during the year and inter-annual acclimation in terms of plant water use efficiency, biomass accumulation, as well as yield components and berry composition. WD differentially reduced the accumulation of primary metabolites at plant and berry levels, but it little changed their concentrations in the fruits at the ripe stage. Moreover, WD differentially impacted the accumulation of secondary metabolites and major cations between the varieties. In the talk, we’ll present the main results regarding the WD impacts on fruit metabolites and enlarge the reflection about the practical assessment of the grapevine acclimation to WD.

Primary results on the characterisation of “terroir” in the certified denomination of origin Rioja (Spain)

La integración de variables referentes al clima, la litología y la morfología del relieve y el suelo en la D.O. Ca Rioja permite la configuración de un modelo a través de cuya validación se obtiene la delimitación de zonas vitícolas.

The adaptation and resilience of scions and rootstocks to water constraint

The ability of grapevine cultivars and rootstocks to cope with and adapt to recurring water constraints is the focus of this study. The contribution of intrinsic (epigenetic) and extrinsic (rootzone microbial community) factors to water stress resilience will be discussed. The study was conducted in a validated model vineyard where three scion cultivars (Pinotage, Shiraz, and Cabernet Sauvignon) on two rootstocks (Richter 110 and USVIT8-7) grow under recurring seasonal water constraint (and control) scenarios since planting (in 2020). Comprehensive profiling of the site, soil, atmospheric conditions, plants, and their physiological responses provide contextual data for the analyses conducted.