Macrowine 2021
IVES 9 IVES Conference Series 9 Alternative fate of varietal thiols in wine: identification, formation, and enantiomeric distribution of novel 1,3-oxathianes

Alternative fate of varietal thiols in wine: identification, formation, and enantiomeric distribution of novel 1,3-oxathianes

Abstract

AIM: This study aimed to explore an alternative fate of varietal thiols by identifying and characterising cis-2-methyl-4-propyl-1,3-oxathiane (cis-2-MPO) and cis-2,4,4,6-tetramethyl-1,3-oxathiane (cis-TTMO) in wine. Elucidating these new pathways could aid in explaining the loss of varietal thiols and would further our understanding of the stereochemical relationships between oxathianes and varietal thiols.

METHODS: GC-MS was used to identify cis-2-MPO,1 and a stable isotope dilution assay (SIDA) was developed to quantify its enantiomers after separation with a chiral β-cyclodextrin GC column.2 Varietal thiols and their enantiomers were analysed by SIDA with HPLC-MS/MS to determine their relationship with cis-2-MPO. Production of cis-2-MPO and its correlation with 3-SH, 3-SHA, and acetaldehyde was studied by profiling the evolution of these volatiles during alcoholic fermentation (AF) of Sauvignon blanc (SB) juice fermented with J7, VIN13, and their co-inoculum.3

RESULTS: cis-2-MPO, derived from 3-SH and acetaldehyde, was identified and then measured at up to 460 ng/L (equivalent to 385 ng/L of 3-SH) in a set of wines. Analysis of (2R,4S)-2-MPO and (2S,4R)-2-MPO, arising from thiol enantiomers (3S)-3-SH and (3R)-3-SH, showed respective concentrations of up to 250 and 303 ng/L. The enantiomeric ratio of (2R,4S)-/(2S,4R)-2-MPO was 43:57 whereas that of (3S)-/(3R)-3-SH in the same wines was 51:49.2 Strong correlations were revealed for both 3-SH and cis-2-MPO and their related enantiomeric pairs.The AF study showed cis-2-MPO was produced from an early stage of AF and reached a peak of 847 ng/L (VIN13 ferment) before gradually declining to 50-65 ng/L. Its evolution profile was identical to that of acetaldehyde and 3-SHA, with moderate to strong correlations found for the analytes.Additionally, cis-TTMO, derived from 4-MSPOH and acetaldehyde, was identified in wine as a single enantiomer at concentrations of up to 28 ng/L (equivalent to 23 ng/L of 4-MSPOH). An aroma detection threshold of 14.9 µg/L was determined for cis-TTMO, and this new volatile was described as ‘citrus’, ‘green’, ‘sweet/caramel’, and ‘mango’, shifting toward ‘onion/sweaty’ and ‘sulfurous’ at higher concentrations.2

CONCLUSIONS

The knowledge gained helps rationalise the fate of varietal thiols via the production of oxathianes in wine, and reveals the stereochemical links between these related compounds. A chemical formation pathway to oxathianes was verified and may also apply to other thiols bearing the 1,3-sulfanylalkanol substitution through the reaction with acetaldehyde.

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Xingchen Wang

Department of Wine Science and Waite Research Institute, The University of Adelaide (UA), PMB 1, Glen Osmond, SA 5064, Australia,Liang, CHEN, Université de Bordeaux, Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Institut des Sciences de la Vigne et du Vin, 33882, Villenave d’Ornon cedex, France Dimitra L., CAPONE, Department of Wine Science and Waite Research Institute, Australian Research Council Training Centre for Innovative Wine Production, UA, PMB 1, Glen Osmond, SA 5064, Australia Aurélie, ROLAND, SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France David W., JEFFERY, Department of Wine Science and Waite Research Institute, Australian Research Council Training Centre for Innovative Wine Production, UA, PMB 1, Glen Osmond, SA 5064, Australia

Contact the author

Keywords

3-sulfanylhexan-1-ol, 4-methyl-4-sulfanylpentan-2-ol, acetaldehyde, chiral stationary phase, odour detection threshold, sauvignon blanc, stable isotope dilution assay, gas chromatography–mass spectrometry

Citation

Related articles…

Supramolecular approaches to the study of the astringency elicited by wine phenolic compounds

The objective of this study is to review the scientific evidences and to advance into the knowledge of the molecular mechanisms of astringency. Astringency has been described as the drying, roughing and puckering sensation perceived when some food and beverages are tasted (1). The main, but possibly not the only, mechanism for the astringency is the precipitation of salivary proteins (2,3). Between phenolic compounds found in red wines, flavan-3-ols are the group usually related to the development of this sensation. Other compounds, phenolic or not, like anthocyanins, polysaccharides and mannoproteins could act modifying or modulating astringency perception by hindering the interaction between flavanols and salivary proteins either because of their interaction with the flavanols or because of their interaction with the salivary proteins.

MAPPING OF GAS-PHASE CO₂ IN THE HEADSPACE OF CHAMPAGNE GLASSES BY USING AN INFRARED LASER SENSOR UNDER STATIC TASTING CONDITIONS

From the chemical angle, Champagne wines are complex hydro-alcoholic mixtures supersaturated with dissolved carbon dioxide (CO₂). During the pouring process and throughout the several minutes of tasting, the headspace of a champagne glass is progressively invaded by many chemical species, including gas-phase CO₂ in large majority. CO₂ bubbles nucleated in the glass and collapsing at the champagne surface act indeed as a continuous paternoster lift for aromas throughout champagne or sparkling wine tasting [1]. Nevertheless, inhaling a gas space with a concentration of gaseous CO₂ close to 30% and higher triggers a very unpleasant tingling sensation, the so-called “carbonic bite”, which might completely perturb the perception of the wine’s bouquet.

Predicting oxygen consumption rate by tannins through sweep linear voltammetry and machine learning models

Nowadays, it is well known that oxygen significantly impacts wine quality. The amount of oxygen wine consumes during the winemaking process depends on several factors, such as storage conditions, the number of rackings, the materials used for aging, and the type of closure chosen for bottling.

α-Terpinyl ethyl ether: stereoselective GC × GC confirmation and identification of its precursors in wine

Wines exhibit profound chemical complexity which arise from a diverse array of compounds that contribute to its sensory profile.

THE FLAVANOL PROFILE OF SKIN, SEED, WINES, AND POMACE ARE CHARACTERISTIC OF EACH TYPOLOGY AND CONTRIBUTES TO UNDERSTAND THE FLAVAN- 3-OLS EXTRACTION DURING RED WINEMAKING

Wine flavanols are extracted from grape skin and seeds along red winemaking. Potentially, eight flavan-3-ol subunits may be present as monomers or as tannins constituents, being these catechin, epicathechin, gallocatechin, epigallocatechin end the gallates of the mentioned units. In this work the flavanol profiles of grape skins and seeds before (grapes) and after (pomace) red winemaking were studied together with the one in the corresponding wines. The trials were made over two vintages in Vitis vinifera cv. Tannat, Syrah and Marselan from Uruguay.