Macrowine 2021
IVES 9 IVES Conference Series 9 Chemical and colorimetric study of copigmentation between malvidin-3-O-glucoside and wine polyphenols and polysaccharides

Chemical and colorimetric study of copigmentation between malvidin-3-O-glucoside and wine polyphenols and polysaccharides

Abstract

AIM: The objective of this work was to perform a colorimetric study of the copigmentation between malvidin-3-O-glucoside, one of the main anthocyanins in red wines, and different wine phenolic compounds and polysaccharides. The present work also aimed to study the stabilization effect on the flavylium cation due to the copigmentation interactions with these compounds.

METHODS: Copigmentation was studied in model systems containing malvidin-3-O-glucoside and different copigments, including flavonols, flavanols, hydroxycinnamic and hydroxybenzoic acids and also polysaccharides at two pH values. The stability of the flavylium cation (25 ºC for 5 weeks) was assessed by HPLC-DAD in an acid medium whereas the study of copigmentation and its relevance on color was carried out at wine like pH (pH 3.6) by differential colorimetry using CIELAB parameters calculated from the whole visible spectra.

RESULTS: Important changes in the CIELAB parameters of the model systems were observed depending on the phenolic compound assayed as copigment, which could point out differences on the copigmentation interactions established. In the case of polysaccharides, it has been observed that they could play a role on the copigmentation effect. Moreover, copigmentation reactions seem to exert an influence on the flavylium cation stability by stabilizating the flavylium concentration during the length of the study or favoring the formation of anthocyanin-derived pigments. 

CONCLUSIONS

Color changes and stability of the flavylium cation due to copigmentation phenomenon between anthocyanin and phenolic compounds and/or polysaccharides can be related to the copigment structure.

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Bárbara Torres-Rochera 

Department of Analytical Chemistry, Nutrition and Food Sciences, Universidad de Salamanca, Salamanca, E37007, Spain. ,Ignacio GARCÍA-ESTÉVEZ, Department of Analytical Chemistry, Nutrition and Food Sciences, Universidad de Salamanca, Salamanca, E37007, Spain.  María Teresa ESCRIBANO-BAILÓN, Department of Analytical Chemistry, Nutrition and Food Sciences, Universidad de Salamanca, Salamanca, E37007, Spain.

Contact the author

Keywords

anthocyanins, phenolic compounds, polysaccharides, copigmentation, wine stability

Citation

Related articles…

First disclosure of eugenol precursors in Vitis genus: analytical development and quantification

The main aim of this work was to develop an analytical method to disclosure the
molecular form of eugenol precursor. Indeed eugenol is an important contributor to
Armagnac spirits typicity made with Baco blanc.

Effects of post-fermentative cold maceration on chemical and sensory characteristics of Syrah, Cabernet Franc and Montepulciano wines

Astringency sensation decreases slowly during the aging of red wine. Complex reactions of condensation and precipitation of wine polyphenols are involved in this phenomenon. Wine composition and conditions of aging, such as temperature and oxygen availability, strongly influence evolution of the phenol matrix. Recently, a Post-Fermentative cold Maceration (PFM) technique was tested with the aim of accelerating reactions leading to the reduction of astringency and exploiting chemical compounds not extracted from the solid parts of grapes during the previous traditional maceration phase. To this purpose, an innovative maceration system was engineered and used to perform PFM trials on marc derived from vinification of different varieties of red grapes.

Rootstock effect on Cabernet Sauvignon aromatic and chemical composition

Grape quality potential for wine production is strongly influenced by environmental parameters and agronomic factors. Several studies underline the rootstock effect on scions vegetative growth and berry composition [1] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Moreover, little is known about the effect of rootstock genetic variability on the aromatic composition in wines.

Vertical cordon training system enhances yield and delays ripening in cv. Maturana Blanca

The growing interest in minority grape varieties is due to their potential for adaptation to global warming and their oenological capabilities. However, the cultivation of these varieties has often been limited due to their low economic efficiency. One such example is Maturana Blanca, a recently recovered and authorized minority grape variety in the DOCa Rioja region, known for its remarkable oenological potential but low productivity. This study aimed to increase the yield of Maturana Blanca by implementing the vertical cordon training system, which allowed for a higher number of buds per plant and an increased cluster count per vine.

Development of a new method to understand headspace aroma distribution and explore the pre-sensory level in perceptive interactions involved in red wine fruity aroma expression

A part, at least, of red wines fruity expression may be explained by perceptive interactions involving particularly various substituted ethyl esters and acetates present at concentration far below their olfactory threshold, specifically thanks to synergistic effects. Wine sensory perception is directly linked to the stimulation of the taster at the level of olfactory epithelium by volatiles. These compounds are liberated from the matrix to the atmosphere, and will then be smelt. From a physico-chemical point of view, these volatiles ability to be released may be evaluated by their partition coefficients, which correspond to the volatile concentration ratio between the liquid and gas phase. Our goal is, through these coefficients determination, to assess if volatile matrix composition is able to impact the volatility of some compounds, and then explain sensory perception, i.eto evaluate what is called the pre-sensorial level impact.