Macrowine 2021
IVES 9 IVES Conference Series 9 Approaches to the classification of wine aroma aging potential. Applications to the case of Valpolicella red wines

Approaches to the classification of wine aroma aging potential. Applications to the case of Valpolicella red wines

Abstract

AIM: Unlike most of other foods, wine sensory quality is thought to reach a peak after an aging period. In the case of the Valpolicella red wines, the PDO regulation requires wines to undergo a minimum period of aging comprised between one and four years depending on the wine type. During this period many changes in wine composition take place, including significant modifications to wine aroma composition, through a wide range of acid hydrolysis reactions, cyclization, rearrangements and oxidations, that to date are only partly understood. Among these, hydrolysis of esters and glycosidic precursors is considered central to wine aroma evolution. Wines with higher content of precursors are expected to have greater aroma potential. However, acid-catalysed degradation also takes place during wine aging, so that the actual content of a given volatile compound after a period of aging is given by the balance between acid-driven release and degradation. The aim of this study was to investigate the fate of some volatile aroma compounds important for the sensory profile of Valpolicella wine.

METHODS: Different Valpolicella wines obtained from grapes harvested in different vineyards and vintages were submitted to two different ageing protocols. In one case wines were kept for 30 days at 16°C and 40 °C (Slaghenaufi et al. 2019) the latter simulating an aging of approximately one years. In the second case, harsher conditions were applied, consisting of 60°C (±0.2°C) for 0, 48, 72, and 168 (Silva Ferreira et al. 2003). Free volatile compounds and glycosidic precursors were analysed with SPE- and SPME-GC-MS techniques.

RESULTS: Several classes of compounds of varietal and fermentative origin like esters, terpenes, norisoprenoids and to a lesser extent of some benzenoids were affected by aging. In particular aged wines were characterized by increased content of 1,4- and 1,8-cineole, p-cymene and p-menthane-1,8-diol, branched chain fatty acids ethyl esters, TDN, TPB, vitispirane, and 2,6-dimethoxyphenol. The application of the harsh aging treatment allowed to highlight highly significant relationships between cineole occurrence in aged wines and linalool content of the young wine, in particular the ratio between glycosylated and free forms. Furthermore, most of acetic and ethyl esters were found to decrease with aging in an amount correlated to their initial content.

Conclusions

Occurence and amount of many compounds in aged wines was correlated to the composition of specific compounds in young wines. In particular in aged wines cineole occurrence was linked to linalool content, providing useful clues for the selection of young wines with specific aging attitude.

ACKNOWLEDGMENTS

Azienda Agricola f.lli Tedeschi is acknowledged for financial support

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Giovanni Luzzini

University of Verona,Davide SLAGHENAUFI, University of Verona Maurizio, UGLIANO, University of Verona Jessica, SAMANIEGO-SOLIS, University of Verona Riccardo TEDESCHI, Azienda Agricola F.lli Tedeschi

Contact the author

Keywords

aging treatment, cineoles, linalool, balsamic aroma, valpolicella

Citation

Related articles…

Viticultural practices: past, present and future

Practices in viticulture have greatly evolved in the last five decades. There were three objectives: improvement in the quality of the products, reduction in the production costs through mechanization

Grape metabolites, aroma precursors and the complexities of wine flavour

A critical aspect of wine quality from a consumer perspective is the overall impression of wine flavour, which is formed by the interplay of volatile aroma compounds, their precursors, and taste and matrix components. Grapes contribute some potent aroma compounds, together with a large pool of non-volatile precursors (e.g. glycoconjugates and amino acid conjugates). Aroma precursors can break down through chemical hydrolysis reactions, or through the action of yeast or enzymes, significantly changing the aroma profile of a wine during winemaking and storage. In addition, glycoconjugates of monoterpenes, norisoprenoids and volatile phenols, together with sulfur-conjugates in wine, provide a reservoir of additional flavour through the in-mouth release of volatiles which may be perceived retro-nasally.

Influence of basalt on the terroir of the Columbia Valley American Viticultural Area

The Columbia Valley American Viticultural Area (AVA) of the Pacific Northwest, USA is the world’s largest officially recognized viticultural area with basalt bedrock.

Ugni blanc berry and wine composition impacted by thirteen rootstocks

The Cognac region is expanding, driven by the success of its renowned brandy and the demand for high grape yields to ensure a steady supply of base wine for distillation. Ugni blanc, the most widely planted grape variety, relies on rootstocks for soil and climate adaptation, providing essential nutrient supplies to the scion. Understanding the impact of rootstocks on key berry components, such as sugars and nitrogen compounds, is crucial. These compounds serve as primary precursors for the production of fermentative aroma metabolites, which, in turn, act as quality indicators for eau-de-vie.

Plant nitrogen assimilation and partitioning as a function of crop load

Aims: The optimization of nitrogen use efficiency (NUE, i.e. uptake, assimilation and partitioning) is a solution towards the sustainable production of premium wines, while reducing fertilization and environmental impact. The influence of crop load on the accumulation of N compounds in fruits is still poorly understood. The present study assesses the impacts of bunch thinning on NUE and the consequences on the free amino N (FAN) profile in fruits.