Macrowine 2021
IVES 9 IVES Conference Series 9 The future of DMS precursors during alcoholic fermentation: impact of yeast assimilable nitrogen levels on the contents of DMSp in young wines

The future of DMS precursors during alcoholic fermentation: impact of yeast assimilable nitrogen levels on the contents of DMSp in young wines

Abstract

Some red wines develop a “bouquet” during ageing. This complex aroma is linked to quality by wine tasters1. The presence of dimethylsulfide (DMS) in those wines is implicated in the expression of “bouquet typicity”2. DMS is a result of the hydrolysis of its precursors. Several molecules, including S-methylmethionine, could constitute the precursors of DMS3. DMS can be liberated by alkaline hydrolysis and quantified by SPME-GC-MS4. The releasable DMS is designated by “DMSp”. The DMSp levels in grapes are 20 to 30 times higher than those observed in young wines5. Our question is : “What happens during the stages of fermentation?”First, DMSp levels were studied during a small-scale winemaking process and were measured in musts, in wine after alcoholic fermentation (AF) and after malolactic fermentation (MLF). Then, to understand the mechanism of the DMSp degradation, synthetic must was used with various levels of YAN and different pools of inorganic and organic nitrogen such as amino acids. Synthetic musts were supplemented by one of the known DMS precursor (S-methylmethionine), inoculated with S. cerevisiae and the fermentations were monitored by evaluating CO2 evolution.During AF, around 90% of DMSp is degraded by the action of yeast. The MLF consumed a little DMSp but it is negligible compared to AF. The link between DMSp and nitrogen would generate a variable consumption of DMSp during AF. Then, DMSp is consumed at the beginning of alcoholic fermentation during the yeast growth step and the level of consumption depends of the constitution of YAN. The several pools of nitrogen substances of YAN tested shows various results about the consumption or conservation of DMSp during AF.Finally, the assays in laboratory to try to control DMSp levels in young wine will help the winemakers to keep the ageing potential of red wine and maintain a high quality of wine.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Justine Laboyrie

University of Bordeaux, ISVV, EA 4577, INRA, USC 1366 OENOLOGIE, 33140 Villenave d’Ornon, France,Marina Bely, University of Bordeaux, ISVV, EA 4577, INRA, USC 1366 OENOLOGIE, 33140 Villenave d’Ornon, France Nicolas Le Menn, University of Bordeaux, ISVV, EA 4577, INRA, USC 1366 OENOLOGIE, 33140 Villenave d’Ornon, France Stéphanie Marchand, University of Bordeaux, ISVV, EA 4577, INRA, USC 1366 OENOLOGIE, 33140 Villenave d’Ornon, France

Contact the author

Keywords

wine ageing potential, dimethylsulfide, s-methylmethionine, alcoholic fermentation, yeast assimilable nitrogen

Citation

Related articles…

Evaluating South African Chenin blanc wine styles using an LC-MS screening method

Sorting Chenin blanc is one of the most important white wine cultivars in South Africa. It has received a lot of attention and accolades in the past years and more research than ever is dedicated to this versatile cultivar. According to the Chenin blanc association of South Africa, there are three recognized dry wine styles, Fresh and Fruity (FF), Rich and Ripe Unwooded
(RRU), and Rich and Ripe Wooded (RRW). They are traditionally established with the aid of expert sensory evaluation, but the cost and the (subjective) human factor are aspects to be taken into account. A more objective and possibly robust way of assessing and attributing these styles can be the use of chemical analysis.

Comparative proteomic analysis of wines made from Botrytis cinerea infected and healthy grapes reveal interesting parallels to the gushing phenomenon in sparkling wine

In addition to aroma compounds also protein composition strongly influences the quality of wines. Proteins of wine derive mainly from the plant Vitis vinifera and may be influenced by abiotic stress as well as fermentation conditions or fining. Additionally, fungal infections can affect the protein content as well by introducing fungal proteins or affecting grape protein composition. An infection of the vine with the plant pathogenic fungus Botrytis (B.) cinerea was shown to cause a degradation of proteins in the resulting wine. Moreover, it influences the foaming properties in sparkling wine.

Effect of redox mediators on the activity of laccase from Botrytis cinerea against volatile phenols

Volatile phenols namely 4-ethylphenol and 4-ethylguaiacol are formed by enzymatic decarboxylation of hydroxycinnamic acids by Brettanomyces yeasts to give vinylphenols and subsequent reduction of the vinyl group to form the correspondent ethylphenols. The presence of these compounds in wine affects negatively its aromatic quality, conferring unpleasant animal and phenolic odor when present in quantities above the olfactory detection threshold [1]. Several methods have been described to remove these undesirable compounds from wines, including the use laccase enzymes [2, 3]. Due to this, the aim of this work was to evaluate the effect of several natural redox mediators on the activity of Botrytis cinerea laccase against these volatile phenols.

Characterization of Mesoclimatic zones competent for the culture of vine (vitis vinifera l.) in the province of San Juan, Argentina

Le zonage agroclimatique a pour objet de caractériser des lieux ayant des aptitudes distinctes pour la production de la vigne. La province de San Juan en Argentine est l’une des régions vitivinicoles les plus chaudes du pays.

Phloem anatomy traits predict maximum sugar accumulation rates

Heat and water stress can accelerate berry sugar accumulation and lead to excessive sugar-to-acid ratios at harvest, producing bland, overly-alcoholic wines. Selecting grapevines for slower sugar accumulation could help maintain wine quality under future, hotter conditions, but these efforts have been stymied by our limited understanding of the traits determining sugar accumulation rates. Here, we measured traits characterizing the structure and anatomy of the sugar transport system – the phloem – in 16 winegrape cultivars and tested for relationships with sugar accumulation rates and cultivar climate classifications.