Macrowine 2021
IVES 9 IVES Conference Series 9 Revealing the origins of old bordeaux wines using terpene quantification

Revealing the origins of old bordeaux wines using terpene quantification

Abstract

The overall quality of fine wines is linked to the development of “bouquet” during wine bottle ageing (1). Bordeaux red wine ageing bouquet is defined by the association of several odours including fresh and fruity notes sometimes related to specific compounds. Some of those molecules, such as thiols or DMS are issued from precursors produced by the grapevine (2–5). On the another hand, several compounds such as terpenes are produced by the grape as precursors (6) and released during ageing. The aroma of aged wines , the “bouquet” could originate directly in grapes thanks to flavour precursors (7). In this study we addressed the questions: What is the most important between vintage and terroir in wine identity? And is there a molecular signature in the aroma of old wines linked to grape origin and revealed during ageing?Over 80 volatile molecules including DMS, esters, terpenes, mint terpenes, C13-norisoprénoïdes, volatiles oak wood compounds and off-flavors were quantified by GC/MS in 80 red Bordeaux wines (7 domains x 12 vintages between 1990 and 2007). A statistical analysis was performed on the dataset. First, the presence of most of the targeted molecules were identified in the 80 wines and the link between their contents and the wines’ ages was evaluated. After that, the hypothesis of wine identity being linked to wood contact or off-flavors was rejected. Next, principal component analysis (PCA) on the data showed a separation between the 7 vineyards studied. Each Bordeaux area and domain could be represented by one or several molecules. Then, a discriminant factor analysis (DFA) showed the weight of each compound in the separation. The terpenes, in particular terpinen-1-ol, terpinen-4-ol and α-terpinene, were implicated to the partitioning of vineyards. A degradation of the separation of the wines is observed if terpenes levels are excluded from the data set. Nevertheless, the separation is not effective based on solely terpene levels. The profile of terpenes in the molecular signature of these Bordeaux old wines is important but the signature of studied domains is incomplete without the other compounds.These results highlight the specificity of productions areas and the existence of a molecular identity unique to each domain beyond the effect of vintage and the passage of years. The terroir and blending practiced in Bordeaux are probably involved in this singular molecular identity.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Justine Laboyrie

Unité de recherche Oenologie, EA 4577, USC 1366 INRAE, ISVV, University of Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France ,Davide Slaghenaufi, Department of Biotechnology, University of Verona 37029 San Pietro in Cariano, Italy Giovanni Luzzini, Department of Biotechnology, University of Verona 37029 San Pietro in Cariano, Italy Maurizio Ugliano, Department of Biotechnology, University of Verona 37029 San Pietro in Cariano, Italy Laurent Riquier, Unité de recherche Oenologie, EA 4577, USC 1366 INRAE, ISVV, University of Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France Stéphanie Marchand, Unité de recherche Oenologie, EA 4577, USC 1366 INRAE, ISVV, University of Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France

Contact the author

Keywords

red wines identity, ageing, gas chromatography analysis, terpenes, terroir

Citation

Related articles…

Dry leaf hyperspectral reflectance predicts leaf elemental composition in grafted hybrids

Elemental composition, measured as the concentrations of different elements present in a given tissue at a given time point, is a key indicator of vine health and development. While elemental composition and other high-throughput phenotyping approaches yield tremendous insight into the growth, physiology, and health of vines, costs and labor associated with repeated measures over time can be cost-prohibitive. Recent advances in handheld sensors that measure hyperspectral reflectance patterns of leaf tissue may serve as an affordable proxy for other types of phenotypic data, including elemental composition. Here, we ask if reflectance patterns of dried Chambourcin leaf tissue from an experimental grafting vineyard can predict the known elemental composition of those leaves.

Elucidating the biological function of EPFL9 in grapevine roots

Epidermal Patterning Factors are a class of cysteine rich peptides known to be involved in many developmental processes. The role of EPF1, EPF2 and EPFL9 in controlling leaf stomata formation has been well described in model plants and cereals, and recently also in grapevine, while little is known about their activity in other organs. The aim of our study is to investigate whether VviEPFL9-2 can have a specific biological function in grapevine roots, where it resulted to be expressed. As grapevine is cultivated in the form of a grafted plant, we focused our study on the commonly used rootstock Kober 5BB (Vitis berlandieri x Vitis riparia). VviEPFL9-2 was edited in Kober 5BB plants using Agrobacterium tumefaciens transformation of embryogenic calli and the CRISPR/Cas9 technology. The phenotypic evaluation in greenhouse indicated that, as expected, the leaves of knock-out (KO) plants have a significant lower stomatal density compared to WT, associated with a lower stomatal conductance.

Influence of soil management and vine water regime on leaf gas exchange, berry composition and quality of Chasselas wines in Switzerland

A soil management and vine irrigation trial was carried out for 4 consecutive years from 2020 to 2023 at agroscope’s experimental vineyard in leytron (Valais, Switzerland) with the Chasselas grape variety (clone 14-33/4, grafted on 5bb). Two types of soil maintenance (bare soil with chemical weeding and sown grass) coupled with two water regimes (with and without drip irrigation from flowering to veraison) were compared in a randomized design with four replicates of 10 vines each.

Preliminary study of extraction of polysaccharides from pomace by high powered ultrasonic combined with enzymes

Red grape pomace can be an important source of polysaccharides, but currently they are little studied and even less with viable and environmental extraction processes (green extraction). These green techniques must be able to break the cell wall so that the compounds contained in the cells, including polysaccharides, are released and can have a great influence on extraction yields, the chemical structure of polysaccharides and applications in wines. Amongst the emerging green techniques most applied to the extraction of bioactive compounds, such as polysaccharides, high-power ultrasound (US) and enzyme-assisted extraction stand out.

Evaluation of two transmittance meters in estimating chlorophyll and nitrogen concentrations in grapevine cultivars

Two transmittance-based chlorophyll meters (SPAD-502 and CCM-200) were evaluated in estimating chlorophyll (Chl) and nitrogen (N) levels in grapevine leaves.