Macrowine 2021
IVES 9 IVES Conference Series 9 From precursor identification to the study of the distribution of 3-methyl-2,4-nonanedione in red wines and spirits

From precursor identification to the study of the distribution of 3-methyl-2,4-nonanedione in red wines and spirits

Abstract

Prematurely aged red wines are marked by intense prune and fig aromatic nuances that dominate the complex bouquet that can be achieved through bottle aging. This oxidation off-flavor is, in part, caused by the presence of 3-methyl-2,4-nonanedione (MND).1 It is interesting to note that similar aromas are also detected in aged spirits. Despite its strong sensory impact in red wines, the precursors of this diketone were not well described.

So, first investigations were performed in order to quantify this compound in young and aged spirits in order to explain these nuances. In addition, determination of MND precursors in red wines as well as the study of oxidation mechanisms on their evolutions will improve our ability to understand its formation pathway in alcoholic beverages.

The first step of this work aimed at identifying a precursor of MND in grapes and wines. Based on the MND distribution in grapes, in young and old wines we hypothesized that ketols might be precursors of this diketone. We describe the chemical synthesis of 2-hydroxy-3-methylnonan-4-one (syn- and anti-ketol) as well as their identification in wines. MND and ketols were quantified by SPME-GC-MS (CI, MeOH) using SIS and MS/MS mode, respectively, in more than 150 Merlot and Cabernet Sauvignon wines from California, Bordeaux, and Switzerland. Oxidation experiments conducted in model wine and red wine demonstrated that ketols are able to produce MND. Based on these data, their role as MND precursor will be discussed. In addition, we also report first results concerning the origin of ketols in grapes and wines.

We also extended our investigations to spirits were old samples can develop similar dried plum aromas. We also report for the first time the distribution of MND in many spirits including Cognac, Armagnac, Brandy, Bourbon, Grappa, Rhum, Whisky. Highest levels were found in grappa (> 10 000 ng/L), exceeding its detection thresholds (100 ng/L). Sensory analysis experiments revealed that this compound contributes to the aroma of spirits. Assay of ketols in these samples revealed that they can be precursors of MND in spirits.

This project has improved our understanding of the formation and evolution of MND in wines, enabling more accurate predictions of the oxidative behavior and aging potential of red wines. In addition, we describe its first identification as well as its sensory impact in spirits

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Alexandre PONS

Université Bordeaux, ISVV, EA 4577, Unité de Recherche Œnologie, F-33882 Villenave d’Ornon, France, Seguin Moreau Cooperage, ZI Merpins, 16103 Cognac, France. Ana PETERSON, Université Bordeaux, ISVV, EA 4577, Unité de Recherche Œnologie, F-33882 Villenave d’Ornon, France. Fannie THIBAUD, Université Bordeaux, ISVV, EA 4577, Unité de Recherche Œnologie, F-33882 Villenave d’Ornon, France. Jean Charles MATHURIN, E. Rémy Martin & C°, Z.I, 16100 Merpins, France. Yannick LANDAIS, Université Bordeaux, ISM, CNRS UMR 5255, Talence, France. Philippe DARRIET, Université Bordeaux, ISVV, EA 4577, Unité de Recherche Œnologie, F-33882 Villenave d’Ornon, France. INRA, ISVV, USC 1366, Unité de Recherche Œnologie, F-33882 Villenave d’Ornon, France

Contact the author

Keywords

aging, red wines, oxidation, aroma, spirits, aroma precursor

Citation

Related articles…

Quantifying water use diversity across grapevine rootstock-scion combinations

Vines require proper light levels, temperature, and water availability, and climate change is modifying these factors, hampering yield and quality. Despite the large diversity of rootstocks, varieties, and clones, we still lack knowledge of their combined effects and potential role in a warmer and dryer future. Therefore, we aim to characterize some of the existing diversity of rootstocks and genotypes and their interaction at the eco-physiological level, combining stomatal conductance (gs) and chlorophyll a fluorescence analysis.

Intravarietal diversity: an opportunity for climate change adaptation

Merlot grapevine is the second wine cultivar most planted in the world and especially in the Bordeaux wine region. This cultivar has many advantages in producing high quality wine; however, in the last decade, climate change has increased the sugar concentration in berries at harvest and shortened the maturation cycle. If this has been up to now a great opportunity to improve wine quality profile, we are touching the tipping point. High sugar concentration at harvest induces high alcool content in wine which can negatively impact wine quality. There are many viticultural and oenological practices possible to limit this effect. In this study we focus on plant material through intra-varietal diversity of Merlot cultivar.

METABOLIC INTERACTIONS OF SACCHAROMYCES CEREVISIAE COCULTURES: A WAY TO EXTEND THE AROMA DIVERSITY OF CHARDONNAY WINE

Yeast co-inoculations in winemaking have been investigated in various applications, but most often in the context of modulating the aromatic profiles of wines. Our study aimed to characterize S. cerevisiae interactions and their impact on wine by taking an integrative approach. Three cocultures and corresponding pure cultures of S. cerevisiae were characterized according to their fermentative capacities, the chemical composition and aromatic profile of the associated Chardonnay wines. The various strains studied within the cocultures showed different behaviors regarding their development.

Population-wide diversity study in Lachancea thermotolerans highlights superior starters for winemaking

Grapes from warm(ing) climates often contain excessive sugars but lack acidity. This can lead to highly alcoholic wines with compromised stability and balance. The yeast Lachancea thermotolerans can ameliorate such wines due to its metabolic peculiarity – partial fermentation of sugars to lactic acid. This study aimed to elucidate the population-wide diversity in L. thermotolerans, whilst selecting superior strains for wine sector. An extensive collection of isolates (~200) sourced from different habitats worldwide was first genotyped on 14 microsatellite loci. This revealed differentiation of L. thermotolerans genetic groups based on the isolation substrate and geography. The 94 genotyped strains were then characterised in Vitis vinifera cv. Chardonnay fermentations.

UNRAVELLING THE ROLE OF LACTIC ACID BACTERIA ON SPARKLING WINE ELABORATION THROUGH METABOLOMICS APPROACH

Xinomavro is a red grape variety from Northern Greece (Protected Designation of Origin), known for the nice acidities, perfectly appropriate for sparkling wine production (Rosé and Blanc de Noir). The elabo- ration of sparkling wine requires technical as well as scientific skills. Although the impact of the yeast strains and their metabolites on the final product quality is well documented, the action of bacteria still remains unknown.
The present work focuses (i) on the population diversity of lactic acid bacteria isolated from sparkling wines and (ii) on the technological effect of the species during sparkling wine elaboration.