Autochthonous yeasts: a microbiological tool to exalt the quality of the apulian sparkling wine

Abstract

The selection, characterization, and recruitment of autochthonous yeast strains to drive the alcoholic fermentation process is a highly researched practice because it allows the differentiation of the organoleptic properties of wines, assuring process standardization, reducing fermentation times and improving the quality and safety of the final products [1, 2]. Sparkling wines are “special wines” obtained by secondary fermentation of the base wine. ​In the traditional method (Champenoise method), the re-fermentation takes place in the bottle after the addition to the base wine of the so-called tirage solution. This step, also known as prise de mousse, is followed by an aging period characterized by the release of compounds from the yeast cells that affect the organoleptic properties of the final product. The use of autochthonous yeasts as starter cultures for secondary fermentation is one of the recent innovations proposed to enhance and differentiate these wines’ sensory quality [3,4]. Apulia is the second Italian wine-producing region, and its productive chain is now going through a qualitative evolution by implementing the employment of innovative approaches to exalt the peculiar properties of regional wines. This enhancement is also pointed out by the increasing production of sparkling wines by indigenous grape cultivars [4]. We have technologically characterized several autochthonous strains belonging to Saccharomyces cerevisiae species isolated in the Apulian region, firstly at the lab scale and, successively, tested in the winery for both induce alcoholic fermentation in base wine and re-fermentation of white and rosè sparkling wines. For the first time, we evaluated the fermentative properties of selected yeast strains, through a non-targeted metabolomic approach based on the correlation between the volatolomic profile determined by GC-MS and the chemical profile obtained by HPLC-HRMS. Also, we highlighted the important role of yeasts to enhance not only the volatolomic profile but also the phenolic fraction of fermented wines. This confirms that the choice of an autochthonous strain positively modulates the chemistry of wine, with a potential impact on the global organoleptic properties of the final sparkling wine. This is the first report on the use of autochthonous strains isolated in the Salento area (Apulia, Southern Italy) for secondary fermentation to produce sparkling wine. For the first time, to the best of our knowledge, the use of autochthonous strains in sparkling wine has been tested using an integrated non-target metabolomics approach. Acknowledgments: This work was partially supported by the Apulia Region projects: “Innovazione nella tradizione: tecnologie innovative per esaltare le qualità dei vini autoctoni spumante della murgia barese-INVISPUBA” (P.S.R. Puglia 2014/2020 -Misura 16.2).

DOI:

Publication date: September 15, 2021

Issue: Macrowine 2021

Type: Article

Authors

Maria Tufariello 

CNR–Institute of Sciences of Food Production (ISPA), via Prov. le, Lecce-Monteroni, 73100 Lecce, Italy,Antonino Rizzuti, Politecnico di Bari, DICATECh, via Orabona 4, 701245 Bari, Italy; Biagia Musio, Politecnico di Bari, DICATECh, via Orabona 4, 701245 Bari, Italy; Vito Gallo: Politecnico di Bari, DICATECh, via Orabona 4, 701245 Bari, Italy—Innovative Solutions S.r.l., Spin off del Politecnico di Bari, zona H 150/B, 70015 Noci (BA), Italy Piero Mastrorilli: Politecnico di Bari, DICATECh, via Orabona 4, 701245 Bari, Italy—Innovative Solutions S.r.l., Spin off del Politecnico di Bari, zona H 150/B, 70015 Noci (BA), Italy; Vittorio Capozzi: CNR–Institute of Sciences of Food Production (ISPA), via Michele Protano, 71121 Foggia FG; Francesco Grieco: CNR–Institute of Sciences of Food Production (ISPA), via Prov. le, Lecce-Monteroni, 73100 Lecce, Italy

Contact the author

Keywords

sparkling wine, autochthonous yeast, volatolomic profile, phenolic fraction

Citation

Related articles…

Direct NMR evidence for the dissociation of sulfur-dioxide-bound acetaldehyde under acidic conditions: Impact on wines oxidative stability

SO2 reaction with electrophilic species present in wine, including in particular carbonyl compounds, is responsible for the reduction of its protective effect during wine aging. In the present study, direct 1H NMR profiling was used to monitor the reactivity of SO2 with acetaldehyde under wine-like oxidation conditions.

Aroma profile of Oenococcus oeni strains in different life styles

AIM: Three Oenococcus oeni strains previously isolated from spontaneous malolactic fermentation were characterized for their surface properties. Planktonic and sessile cells were investigated for aroma compounds production and the expression of genes involved in citrate and malate metabolism (citE and mleA, respectively), glycoside-hydrolase (dsrO), fructansucrase (levO), rhamnosyl-transferase (wobB), glycosyltransferase (wobO).

The impact of nutrition label formats on wine consumer preferences

Recent regulations concerning alcoholic beverages have prompted producers to revise their product labels to incorporate nutritional information. In this context, qr codes containing such information, known as e-labels, are now being employed on wine labels for the first time.

The effects of reducing herbicides in New Zealand vineyards

Herbicides are commonly sprayed in the vine row to prevent competition with vines for water and minerals and to keep weeds from growing into the bunch zone. Sprays are applied before budbreak and reapplied multiple times during the season to keep the undervine bare. There is growing concern about the negative effects of herbicides on humans and the environment, and weeds in New Zealand have developed resistance to herbicides. Therefore, it is imperative that we reduce our reliance on herbicides in viticulture and incorporate methods that do not engender resistance.

Fast, and full microbiological wine analysis using triple cellular staining.

We propose here a brand new large routine microbiological analysis method intended for oenology, in flow cytometry, using high performance equipment and triple selective cell staining, activated by fluorescence. The results and practical applications of the method are presented: Brettanomyces (Dekkera) Monitoring, fermentations monitoring, bottling and enological practices monitoring.The method allow a complete new microbiological tool for wine industry.The method has been accredited ISO 17025 in our laboratories.