Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Chemical diversity of 'special' wine styles: fortified wines, passito style, botrytized and ice wines, orange wines, sparkling wines 9 Does the location of wine cellars have significant impact on the evolution of madeira wine polyphenols?

Does the location of wine cellars have significant impact on the evolution of madeira wine polyphenols?

Abstract

Unlike table wines, Madeira Wine (MW,17-22% ABV) benefits from a long aging period under thermo-oxidative aging conditions, during which it gains its unique and complex flavour. A broad study is ongoing and aims to assess if the differences in the storage conditions impact significantly the evolution of MWs during canteiro aging. Considering that polyphenols have a significant role in the wine aging, we intended to appraise if there are significant differences in the evolution trends of polyphenols of MWs aging in different cellars under canteiro. Different MWs were aged into brand-new oak casks in two different wine cellars, one in Funchal (B) and other in Caniçal (Z). Temperature and humidity data were sensor recorded. RP-HPLC-DAD was used to perform the identification and quantification of polyphenols [1]. CIELab parameters were also assessed, using an UV-Vis spectrophotometer. For now, it was only analysed the results of the first 9 months. Grape-derived polyphenols remained steady in older wines (2008), while are still developing in younger wines. Vanillin and syringaldehyde contents increased in all samples, probably because wine aging is being developed in brand-new oak casks. Malvasia 2008 wines displayed the highest increase in L* and b*. The 2018 wines also revealed an increase in L* and b* values, but still lower than those of 2008. The room temperature and the thermal amplitude are always higher in location B while humidity is always higher in location Z.Up to 9 months of oak aging it is not noticeable substantial differences between wines polyphenolic profiles, however there are some indications that MWs placed in warmer wine cellars already show signs of greater browning.Vanda Pereira is thankful to ARDITI for her grant (M1420-09-5369-FSE-000001). FEDER financed this work, project IMPACT III (M1420-01-0247-FEDER-000020).

DOI:

Publication date: September 16, 2021

Issue: Macrowine 2021

Type: Article

Authors

Vanda, Pereira 

i3N, University of Aveiro, Portugal ISOPlexis – Sustainable Agriculture and Food Technology Center, University of Madeira, Portugal.,Maria João,CARVALHO, ISOPlexis – Sustainable Agriculture and Food Technology Center, University of Madeira, Portugal. Gabriel, PINTO, ISOPlexis – Sustainable Agriculture and Food Technology Center, University of Madeira, Portugal. Rita, FIALHO, ISOPlexis – Sustainable Agriculture and Food Technology Center, University of Madeira, Portugal. João Marcelo, GASPAR, Madeira Wine Company, S.A., Portugal. Marisela, PONTES, Madeira Wine Company, S.A., Portugal. Ana Cristina, PEREIRA, CIEPQPF, University of Coimbra, Portugal; ISOPlexis – Sustainable Agriculture and Food Technology Center, University of Madeira, Portugal. Francisco, ALBUQUERQUE, Madeira Wine Company, S.A., Portugal. José Carlos, MARQUES, Faculty of Exact Sciences and Engineering & ISOPlexis – Sustainable Agriculture and Food Technology Center, University of Madeira, Portugal.

Contact the author

Keywords

fortified wines; wine maturation; wine oxidation; browning

Citation

Related articles…

Full automation of oenological fermentations and its application to the processing of must containing high sugar or acetic acid concentrations

Climate change and harvest date decisions have led to the evolution of must quality over the last decades. Increases in must sugar concentrations are among the most obvious consequences, quantitatively. Saccharomyces cerevisiae is a robust and acid tolerant organism. These properties, its sugar to ethanol conversion rate and ethanol tolerance make it the ideal production organism for wine fermentations. Unfortunately, high sugar concentrations may affect S. cerevisiae and lead to growth inhibition or yeast lysis, and cause sluggish or stuck fermentations. Even sublethal conditions cause a hyperosmotic stress response in S. cerevisiae which leads to increased formation of fermentation by-products, including acetic acid, which may exceed legal limits in some wines.

Impact of climate on berry weight dynamics of a wide range of Vitis vinifera cultivars 

In order to study the impact of climate change on Bordeaux grape varieties and to assess the behavior of candidate grape varieties potentially better adapted to the new climatic conditions, an experimental vineyard composed of 52 grape varieties was planted in 2009 at the INRAE Bordeaux Aquitaine center[1]. Among the many parameters studied since 2012, berry weight for each variety was measured weekly from mid-veraison to maturity, with four independent replicates. The kinetics obtained allowed to study berry growth, a key parameter in grape composition and yield.

Impact of Ecklonia maxima seaweed extract on the vegetative, reproductive and microbiome in Vitis vinifera L. cv Cabernet-Sauvignon

Context and purpose of the study. Climate change is a major challenge in wine production. It results in erratic weather conditions which may lead to a reduction in grape yield and the subsequent grape and wine quality.

Exploring the mechanisms underpinning grapevine susceptibility to esca in a range of Vitis vinifera L. cultivars

Grapevine susceptibility to fungal diseases, including the vascular disease esca, is a major threat for wine productivity and vineyard perennity worldwide.

Evaluation of six red grapevine cultivars inoculated with Neofusicoccum parvum in a “terroir” of La Mancha wine región (Spain)

Aim: Among Botryosphaeriaceae species associated with Botryosphaeria dieback of grapevines, Neofusicoccum parvum is one of the most virulent and fastest wood-colonizing fungi. This study aimed to evaluate the susceptibility of six red grapevine cultivars (“Bobal”, “Monastrell”, “Garnacha Tinta”, “Moravia Agria”, “Tinto Velasco” and “Moribel” to N. parvum, under field conditions.