Macrowine 2021
IVES 9 IVES Conference Series 9 Occurrence of methyl salicylate in lugana wines: aroma impact and biogenesis 

Occurrence of methyl salicylate in lugana wines: aroma impact and biogenesis 

Abstract

AIM: Methyl salicylate (MeSA) has been reported as a potentially impactful compound in Verdicchio wines produced in central Italy. Lugana is another white wine produced in the north-east of Italy from a grape locally known as Trebbiano di Soave, sharing a very similar genetic background with Verdicchio. The aims of this study were evaluating MeSA occurrence in Lugana, assessing its aroma impact on white wines aroma and elucidating its biogenesis during vinification.

METHODS: Fifteen Lugana wines were analysed for methyl salycilate content in comparison with Verdicchio, Pinot grigio and Garganega wines. MeSA impact on white wine aroma was studied by means of triangular test, adding MeSA at different concentrations. Possible routes of MeSA formation by yeast were investigated by means of a high throughput assay in which S. cerevisiae cells were put in contact with precursor such as salicylic acid (esterification) or glycosidic extracts (glycosidase). Sub-fractions of Lugana glycosidic extracts were also obtained by HPLC fractionation, allowing further evaluation of precursors role. MeSA formation was also followed during fermentation of Lugana must as well as during wine aging. All analyses of MeSA were carried out by SPME-GC-MS.

RESULTS: MeSA concentration in Lugana wines varied in the range 5-120 g/L, and was on average higher that in the other wines analysed. Sensory data showed that 20 µg/L of MeSA were sufficient to impact wine aroma, conferring floral and balsamic notes. Formation of MeSA was observed when yeast cells were in the presence of glycosidic extract, whereas esterification of salicylic acid was not confirmed. Release of MeSA from different HPLC fractions was observed, suggesting multiple possible precursors

CONCLUSIONS:

MeSA is present in Lugana wines at concentrations sufficiently high to impact wine aroma. MeSA odor in wine MeSA appears to be associated to floral attributes. MeSA formation is mostly due to yeast cleavage of grape glycosidic precursor

ACKNOWLEDGMENTS:

Biolaffort is acknowledged for financial support.

DOI:

Publication date: September 24, 2021

Issue: Macrowine 2021

Type: Article

Authors

Davide Slaghenaufi, Carla INDORATO, Eduardo VELA, Filippo FORTE, Giovanni LUZZINI, Maurizio UGLIANO,

Department of Biotechnology, University of Verona, Italy, 

Contact the author

Keywords

methyl salicylate; lugana; biogenesis; volatile compounds

Citation

Related articles…

A.O.C. huile d’olive de Nyons et olives noires de Nyons

A.O.C. huile d’olive de Nyons et olives noires de Nyons

«Aztec» – the new white table grape resistant variety

This paper presents is the create, the study and amplographic
description the new white Greek table variety grapes “Aztec”, created in 2013 by breeder P. Zamanidis at
the Athens vineyard of the Institute of Olive, Subtropical Plants and Vine.

Study of the effect of native vineyard bacteria on the expression of Plasmopara viticolaeffectors

Downy mildew, caused by the oomycete Plasmopara viticola (Berk. & M.A. Curtis) Berl. & De Toni, is one of the most destructive grapevine diseases mostly affecting Vitis vinifera L. and impacting on viticulture. The pathogen invasion can induce in grapevine multiple defense reactions, first PAMP-Triggered Immunity and secondly Effector-Triggered Immunity. Plasmopara viticola can overcome these defense mechanisms through the secretion of effectors, such as RxLR, into the plant cells, making it easier for the oomycete to infect grapevines. Currently, the use of chemical pesticides remains the most effective way to control the pathogen with severe negative side effects on the environment and animal health.

Oxidation vs reduction: the fate of tannins, pigments, vscs, color,SO2 and metabolomic fingerprint

The management of oxygen during winemaking and aging is a big issue in order to achieve high quality wines. The correct amount of O2 improves aroma, astringency, bitterness and color, however an excess of oxygen promotes the appearance of yellow

Deciphering the color of rosé wines using polyphenol targeted metabolomics

The color of rosés wines is extremely diverse and a key element in their marketing. It is due to the presence of red anthocyanins extracted from grape skins and pigments formed from them and other wine constituents during wine-making.