Macrowine 2021
IVES 9 IVES Conference Series 9 Influence of must fining on wine pinking: relationship between electrochemical and colorimetric measurements and pinking attitude of wine

Influence of must fining on wine pinking: relationship between electrochemical and colorimetric measurements and pinking attitude of wine

Abstract

AIM: “Pinking” is a term used to define an abnormal pink coloration assumed by white wines in certain cases. Despite the are many hypotheses about the causes of this phenomenon, pinking still represents an issue for the wine industry. In the absence of reliable preventive strategies, wineries often rely on treatments such as charcoal fining, which is also negatively impacting wine aroma. This study aims at evaluating the potential of different fining agents based on animal or vegetal proteins to prevent wine pinking when applied at the level of must clarification. The work was carried out on Lugana wines, which is well-recognised as sensible to pinking problems.

METHODS: Two experimental Lugana musts were obtained by applying a standard winemaking protocol and were then clarified with different commercial preparations based on vegetal proteins or casein, alone or in combination with PVPP. A control only using pectolytic enzyme was also prepared. Finings were carried out at 4°C for 16h, and the clear must (200 NTU) was then fermented in controlled conditions. At the end of fermentation all wines were bottled with 25 mg/L of free SO2. Musts and wines were submitted to linear sweep voltammetry, colorimetric (CIELab) and spectrophotometric analyses. Pinking was assessed by CIELab.

RESULTS: Must fining with products based on combination of vegetable proteins and PVPP allowed significant reduction of must content in oxidizable compounds assessed by voltammetry, and this difference was still detected in the finished wines. After one month of bottle aging (free SO2 being 20 mg/L in all wines) pinking was detected for all wines except for those obtained from musts treated with potato or pea protein combined with PVPP. Voltammetric features of the must were shown to be well correlated with the risk of wine pinking. Analysis after one year of bottle aging confirmed the potential of fining to prevent pinking.

CONCLUSIONS: The type of fining agent used in must fining affects the occurrence of pinking in the finished wines. Vegetable proteins in combination with PVPP showed high potential for pinking prevention. Voltammetric analyses could be a promising tool for rapid assessment of the efficacy of fining treatments towards pinking.

ACKNOWLEDGMENTS:

The present work was financially supported by Biolaffort.

DOI:

Publication date: September 28, 2021

Issue: Macrowine 2021

Type: Article

Authors

Maurizio Ugliano 1, Riccardo MANARA 1,  Eduardo VELA ROMAN 1, Virginie MOINE 1, Arnaud MASSOT 2, Davide SLAGHENAUFI 2.

1 University of Verona, Italy.
2 Biolaffort, France.

Contact the author

Keywords

pinking, fining, vegetable proteins, linear sweep voltammetry

Citation

Related articles…

Dimethyl sulfide: a compound of interest from grape to wine glass

The overall quality of fine wines is linked to the development of “bouquet” during wine bottle ageing1. Several chemical reactions, occurring in atmosphere protected from oxygen, are favourable to the formation and preservation of sulphur compounds such as dimethyl sulfide (DMS). DMS accumulate in wines thanks to hydrolysis of its precursors (DMSp) mainly constituted by S-

Exploring the effect of ripening rates on the composition of aroma and phenolic compounds in Cabernet-Sauvignon wines

The study of cultural practices to delay ripening and the characterization of their effect on wine composition is important in the mitigation of accelerated ripening caused by higher temperatures

LARGE-SCALE PHENOTYPIC SCREENING OF THE SPOILAGE YEAST BRETTANOMYCES BRUXELLENSIS: UNTANGLING PATTERNS OF ADAPTATION AND SELECTION, AND CONSEQUENCES FOR INNOVATIVE WINE TREATMENTS

Brettanomyces bruxellensis is considered as the main spoilage yeast in oenology. Its presence in red wine leads to off-flavour due to the production of volatile phenols such as 4-vinylphenol, 4-vinylguaiacol, 4-ethylphenol and 4-ethylguaiacol, whose aromatic notes are unpleasant (e.g. animal, leather, horse or pharmaceutical). Beside wine, B. bruxellensis is commonly isolated from beer, kombucha and bioethanol production, where its role can be described as negative or positive. Recent genomic studies unveiled the existence of various populations.

Impact of sulfur compounds to the antioxidant stability of white wines

The chemical mechanisms involved in oxidation/reduction potential of wine during winemaking and aging are affecting its color, aroma and taste. Chemical oxidation is one of the major causes of development of off-flavors during ageing1. Thus, the chemical changes in wine during storage should be controlled to ensure the sensory quality of the product and avoid consumer rejection that will compromise the economic value of the product. The 1-hydroxyethyl radical has been recognized as the key radical intermediate in the oxidative reactions in wine2. Based on the kinetic study of POBN-1-hydroxyethyl spin adduct formation in wines initiated via the Fenton reaction, a novel tool was recently developed in our laboratory to quantify the resistance of wines against oxidation3.

Oligosaccharides from Vitis vinifera grape seeds: a focus on gentianose as a novel bioactive compound

AIM. Grape seeds (Vitis vinifera) are among the main constituents of grape pomace, also exploited in ingredients for nutraceutics and cosmeceutics, particularly regarding the phenolic fraction. The macromolecules of grape/wine include polyphenols, proteins and polysaccharides.